

1 **Bumblebees as a powerful model for the study of cognitive ecology**

2

3

4 Muth, F.^{1*}, Fischer¹, E.K., Nityananda, V.²

5

6 ¹Department of Neurobiology, Physiology & Behavior, University of California, Davis

7 ²Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK

8

9 *Correspondence: fmuth@ucdavis.edu

10

11 Links to BlueSky accounts:

12 <https://bsky.app/profile/viveknityananda.bsky.social>

13

14

15

16 **Keywords:** bee, *Bombus*, learning, culture, cognitive ecology, comparative cognition

17 **Abstract**

18 Bumblebees have been used to study various aspects of complex cognition and behavior, yet
19 unlike many purely lab-based systems, we also possess rich knowledge of their natural history.
20 We highlight how integrating these perspectives has provided insights into both the underlying
21 mechanisms and functions of cognitive abilities.

22

23

24

25 Comparative cognition seeks to understand whether superficially similar behaviors across
26 species are underpinned by shared or distinct cognitive mechanisms. In general, the
27 anthropocentric perspective focuses on whether a non-human animal *can* do something, based
28 on human-defined cognitive complexity. In contrast, the ecological perspective focuses on *why*
29 animals behave the way they do, considering cognition in the context of the species' ecology and
30 evolution. We highlight how research in bumblebee cognition has allowed researchers to integrate
31 these perspectives to interpret behavior, make cross-species comparisons, and address
32 evolutionary questions. We focus on bumblebees because they have emerged as a powerful
33 invertebrate model in the study of cognition, demonstrating abilities once thought to be unique to
34 vertebrates and raising questions about the evolutionary origins and taxonomic prevalence of
35 these abilities.

36

37 **Why bumblebees?**

38 One of the key advantages of studying bumblebees comes from their experimental tractability:
39 hundreds (or more) of individual bumblebees can readily be studied in a lab set-up, a semi-field
40 environment (e.g., where colonies are maintained and monitored in a lab, but bees can forage
41 outside), or in the wild. These features have allowed researchers to explore a broad variety of
42 topics in cognition that are more difficult to study in larger, longer-lived species. Another key
43 strength comes from bumblebees' motivation to engage with a wide array of experimental stimuli
44 and tasks, allowing for a range of questions and comparison with other species presented with
45 similar tasks. This motivation and skill come from bumblebees' natural behavior as generalist
46 foragers, which involves visiting a wide variety of flowers that vary in both their sensory stimuli
47 and the motor routines needed to access their rewards (Fig. 1, Box 1). While many model species
48 are studied in contexts divorced from their natural ecology, for over a century, bumblebee
49 ecologists have assembled a tremendous wealth of natural history knowledge through
50 observation and experimentation [1], allowing bee cognition to be understood in its ecological and
51 evolutionary context.

52

53 **Using bumblebees to reveal cognitive mechanisms behind behavior**

54 Determining the cognitive mechanisms behind behavior is essential to understanding how
55 behavior is generated and for making informed cross-species comparisons, since similar
56 behaviors can be driven by distinct mechanisms. For example, bumblebees show the capacity for
57 numerical cognition, considered a hallmark of 'complex cognition' [2]. However, rather than solving
58 numerosity tasks in a manner akin to mammals (i.e., sensing number in a rapid 'snapshot' or
59 'subitizing'), bumblebees sequentially scan patterns to enumerate the countable elements within
60 a pattern [2]. This finding was revealed through detailed flight-path analysis of bees visiting
61 artificial flowers containing different numbers of pattern elements and showing that the bees
62 inspect pattern elements up close and one by one [2]. This strategy likely comes from the fine-
63 scale pattern recognition bumblebees use to distinguish between flowers (e.g., Fig. 1A). Indeed,
64 a subsequent study demonstrated via a neural network model that a simple scanning strategy,
65 such as measuring the transitions from dark regions to light regions, can explain bee 'counting'
66 behavior [3]. Thus, a behavior that on the surface appears akin to that of mammals, is
67 underpinned by different mechanisms, which may have different implications for the contexts to
68 which it extends; for example, bees may not be able to 'count' higher numbers or form numerical
69 concepts more broadly [3], but may be particularly adept at recognizing subtle differences in visual
70 patterns. Similar approaches have revealed how sophisticated pattern recognition and concept
71 learning in bees can be explained through their visual ecology and search behavior [4].

72

73 **Using bumblebees to place cognitive mechanisms in an evolutionary context**

74 Along with determining cognitive mechanisms underpinning behavior, an appreciation of ecology
75 can place those mechanisms in context, allowing broader inferences about the evolution of
76 cognitive abilities. One compelling example of this comes from work on bumblebee social
77 learning. Across many types of complex behavior, bumblebees consistently learn the task using
78 associative rules. An elegant study showed that their social learning, too, can be underpinned by
79 associative learning, specifically second-order conditioning [5]. Bumblebees have also
80 demonstrated 'behavioral traditions' in a lab context [6], where a socially learned behavior spreads
81 throughout the group and is maintained over time; and similar mechanisms also likely underpin
82 this behavior (as discussed in [5], [6]). Knowledge of bumblebee natural history allows these
83 findings to be placed in context: while bumblebees are capable of behavioral traditions in an
84 experiment, it is unlikely that behavioral traditions exist in the wild because generations are
85 generally non-overlapping (except for in some temperate regions). Yet the finding that
86 bumblebees *can* socially learn and form behavioral traditions shows that the ability to
87 associatively learn a broad variety of stimuli may be sufficient for this behavior to arise. Therefore,
88 while this does not necessitate that all animals with behavioral traditions or culture are
89 implementing the same cognitive mechanisms as bees, it indicates that the limited examples of
90 culture in non-human animals may be due to a lack of appropriate conditions, rather than rare
91 cognitive abilities.

92

93 **Understanding the evolution of cognition through bumblebee-plant interactions**

94 Finally, researchers have demonstrated how bee cognition and foraging environments influence
95 each other at an ultimate level. For instance, bees' cognition shapes their environments via
96 selection on traits of the flowers they pollinate. A series of experiments has shown that
97 bumblebees shape floral traits of *Brassica rapa* within just a few generations. In one study, plants
98 pollinated by bumblebees evolved to be taller and have more fragrant flowers with increased UV
99 reflection [7], in line with what is typical for bee-pollinated (or 'bee-syndrome') flowers. More recent
100 work is now building upon these studies to delve into the genomic mechanisms underpinning such
101 changes, as well as how selective pressures from pollinators intersect with those from herbivores
102 and other floral visitors. Bee-visited plants, in turn, can also select for particular cognitive abilities
103 – and this research can reveal vital information about the evolution of cognitive traits more broadly.
104 For example, a recent study highlighted how the benefits of cognitive performance can be context-
105 specific. While it is often implicitly or explicitly assumed that better performance at a cognitive
106 ability correlates with a fitness outcome, field-based work shows that the relationship between
107 cognition and fitness is often not as predicted (reviewed in [8]). In bumblebees, a fascinating
108 example shows that working memory predicts foraging success (a fitness proxy) in the spring but
109 not the summer [12]. This may be explained by the fact that in the environment in which bees
110 were tested, floral resources were more plentiful and diverse in the spring compared to the
111 summer [9]. Beyond bees, these results demonstrate that selection pressures on cognition can
112 stem not only from harsh environments but also from having to cope with the richness of an
113 environment.

114

115 **The future of bee cognition**

116 Despite the many lessons already learned from bumblebees, this system continues to hold
117 tremendous potential for asking broad, ecologically informed questions going forward. For
118 example, the incorporation of ecologically relevant features into experimental paradigms has long
119 allowed researchers to probe the limits of bee cognition, and incorporating more naturalistic
120 features could yield further insights (Box 1; see also [10]). In addition, the majority of work in
121 bumblebees has focused on two commercially-available species (*B. impatiens* and *B. terrestris*)
122 and the foraging worker stage, with much less known about the ~250 species worldwide and the
123 other workers and castes. Bumblebee queens also forage at a solitary stage while nest-searching
124 and are better at learning associations than workers [11]. This suggests particularly strong
125 selective pressures to learn at this stage, and hints at the possibility of other cognitive differences
126 between castes reflective of differences in their environments, yet this remains unknown – and as
127 described above, the relationship between cognition and fitness is not straightforward.

128 Beyond bumblebees, there are ~20,000 other bee species with varied natural histories, offering
129 a tremendous untapped pool in which to ask broad questions about how environments can drive
130 the evolution of specific cognitive abilities. While there are logistical challenges involved in
131 working with understudied species, many of these species are already being studied in other
132 areas of biology, such that cognition researchers may benefit from the natural history knowledge
133 already gained through interdisciplinary collaboration. While wild bees carry the limitation of not
134 knowing their past experiences (which likely influence cognitive performance), this, alongside the
135 greater genetic variation, may be an important aspect of understanding realistic variation in

136 cognition. In addition, many bee species have successfully been reared in captive environments,
137 allowing for individual experience to be controlled. Leveraging bee diversity alongside
138 interdisciplinary approaches, combining ecology and cognition with neurobiology and genetics,
139 will help us best understand abilities already revealed and reveal abilities yet to be discovered.

140

141 **BOX 1: Ecology in bumblebee cognition**

142 We highlight features of bumblebees' natural history that have already proved fruitful and that
143 are worthwhile avenues for future exploration.

- 144 • Bumblebees attend to myriad cues, including scent, color, polarized light, texture,
145 electrostatic field, humidity, and temperature. Previous work has set the stage for the
146 exploration of prioritization and sensory integration of multimodal cues.
- 147 • Work on string-pulling indicates that bumblebees can learn novel behavioral routines without
148 an understanding of the physical rules of the task [12]. Future work could test this
149 phenomenon across the impressive range of natural flower morphologies.
- 150 • Experiments typically use sucrose solutions as a proxy for nectar, but flowers offer multiple,
151 chemically and nutritionally complex rewards. Additional work on the impacts of complex
152 rewards on bee cognition is needed [13].
- 153 • Cognition is most often tested in small-scale environments, but foragers and queens must
154 navigate across vast environments searching for food and nest sites.
- 155 • Research has started to address the relationship between cognitive performance and fitness
156 [9]. The utility of being able to test cognitive abilities in individual bees, while also allowing
157 them to forage in wild or semi-wild scenarios, will lead to more discoveries in this realm.

158

159

160 **Figure legend**

161 **Figure 1: The flexibility of bumblebee flower-visiting behavior.** As generalist foragers,
162 bumblebees will manipulate a variety of artificial and natural flowers to gain floral rewards such
163 as nectar and pollen. A) Bumblebees attend to fine-scale pattern information from flowers, which
164 may be the basis of their numerical skills; photo shows a bumblebee visiting a foxglove (photo:
165 The Manic Macrographer). B) Bees visit flowers with complex floral displays, as illustrated by
166 this passionflower (photo: Harald Steeg). C) Bumblebees must employ sometimes complex

167 motor routines to access floral rewards, as illustrated by a bee manipulating the banner and keel
168 of a lupine flower (photo: Dave Angelini).

169

170

171

172 **References**

173 [1] D. Goulson, *Bumblebees: Their Behaviour and Ecology*. Oxford, UK: OUP, 2003.

174 [2] H. MaBouDi *et al.*, 'Bumblebees Use Sequential Scanning of Countable Items in Visual
175 Patterns to Solve Numerosity Tasks', *Integr Comp Biol*, vol. 60, no. 4, pp. 929–942, Oct.
176 2020, doi: 10.1093/icb/icaa025.

177 [3] V. Vasas and L. Chittka, 'Insect-Inspired Sequential Inspection Strategy Enables an
178 Artificial Network of Four Neurons to Estimate Numerosity', *iScience*, vol. 11, pp. 85–92,
179 Jan. 2019, doi: 10.1016/j.isci.2018.12.009.

180 [4] M. Guiraud, M. Roper, and L. Chittka, 'High-Speed Videography Reveals How
181 Honeybees Can Turn a Spatial Concept Learning Task Into a Simple Discrimination Task
182 by Stereotyped Flight Movements and Sequential Inspection of Pattern Elements', *Front
183 Psychol*, vol. 9, Aug. 2018, doi: 10.3389/fpsyg.2018.01347.

184 [5] E. H. Dawson, A. Avarguès-Weber, L. Chittka, and E. Leadbeater, 'Learning by
185 observation emerges from simple associations in an insect model.', *Curr Biol*, vol. 23, no.
186 8, pp. 727–30, Apr. 2013, doi: 10.1016/j.cub.2013.03.035.

187 [6] A. D. Bridges *et al.*, 'Bumblebees acquire alternative puzzle-box solutions via social
188 learning', *PLoS Biol*, vol. 21, no. 3, p. e3002019, Mar. 2023, doi:
189 10.1371/journal.pbio.3002019.

190 [7] D. D. L. Gervasi and F. P. Schiestl, 'Real-time divergent evolution in plants driven by
191 pollinators', *Nat Commun*, vol. 8, p. 14691, Mar. 2017, doi: 10.1038/ncomms14691.

192 [8] C. Rowe and S. D. Healy, 'Measuring variation in cognition', *Behavioral Ecology*, vol. 25,
193 no. 6, pp. 1287–1292, Nov. 2014, doi: 10.1093/beheco/aru090.

194 [9] C. D. Pull, I. Petkova, C. Watrobska, G. Pasquier, M. Perez Fernandez, and E.
195 Leadbeater, 'Ecology dictates the value of memory for foraging bees', *Current Biology*,
196 vol. 32, no. 19, pp. 4279-4285.e4, Oct. 2022, doi: 10.1016/j.cub.2022.07.062.

197 [10] M. Lihoreau, T. Dubois, T. Gomez-Moracho, S. Kraus, C. Monchanin, and C. Pasquaretta,
198 'Putting the ecology back into insect cognition research', 2019, pp. 1–25. doi:
199 10.1016/bs.aiip.2019.08.002.

200 [11] F. Muth, 'Intra-specific differences in cognition: bumblebee queens learn better than
201 workers', *Biol Lett*, vol. 17, no. 8, Aug. 2021, doi: 10.1098/rsbl.2021.0280.

202 [12] C. Wen *et al.*, 'Does bumblebee preference of continuous over interrupted strings in
203 string-pulling tasks indicate means-end comprehension?', *eLife*, vol. 13, Sep. 2024, doi:
204 10.7554/eLife.97018.3.

205 [13] C. T. Hemingway, A. S. Leonard, F. T. MacNeill, S. Pimplikar, and F. Muth, 'Pollinator
206 cognition and the function of complex rewards', *Trends Ecol Evol*, Jul. 2024, doi:
207 10.1016/J.TREE.2024.06.008.

208

209