

1

2 **Physically Stressed Bees Expect Less Reward in an Active Choice Judgement Bias**

3 **Test**

4 **Olga Procenko¹*, Jenny C. A. Read¹, Vivek Nityananda¹***

5 **Affiliation**

6 ¹Biosciences Institute, Newcastle University, Henry Wellcome Building, Framlington
7 Place, Newcastle upon Tyne NE2 4HH, UK

8 *Correspondence: o.procenko2@newcastle.ac.uk, vivek.nityananda@newcastle.ac.uk

9 **Acknowledgements**

10 This work is supported by a BBSRC David Phillips fellowship BB/S009760/1 to VN and
11 a Leverhulme Trust Research Project Grant RPG-2021-358. OP was supported by a PhD
12 scholarship from the Faculty of Medical Sciences, Newcastle University. We are grateful
13 to Théo Robert for insightful discussions.

14 **Author Contributions:** OP, and VN designed research; OP performed research; OP
15 analysed data; JR performed modelling; and OP, JR, and VN wrote the paper.

16

17 **Abstract**

18 Emotion-like states in animals are commonly assessed using judgment bias tests, that
19 measure judgements of ambiguous cues. Some studies have used these tests to argue for

20 emotion-like states in insects. However, most of these results could have other
21 explanations, including changes in motivation and attention. To control for these
22 explanations, we developed a novel judgment bias test, requiring bumblebees to make an
23 active choice indicating their interpretation of ambiguous stimuli. Bumblebees were
24 trained to associate high or low rewards, in two different reward chambers, with distinct
25 colours. We subsequently presented bees with ambiguous colours between the two learnt
26 colours. In response, physically stressed bees were less likely than control bees to enter the
27 reward chamber associated with high reward. Signal detection and drift diffusion models
28 showed that stressed bees were more likely to choose low reward locations in response to
29 ambiguous cues. The signal detection model further showed that the behaviour of stressed
30 bees was explained by a reduction in the estimated probability of high rewards. We thus
31 provide strong evidence for judgement biases in bees and suggest that their stress-induced
32 behaviour is explained by reduced expectation of higher rewards, as expected for a
33 pessimistic judgement bias.

34 **Keywords:** bumblebee, judgment bias, emotion, signal detection theory, drift diffusion,
35 pessimism

36 **Introduction**

37 The presence of emotions in non-human animals is much debated and can have important
38 societal implications for how we treat animals and assess their welfare. Most research on
39 animal emotions has focused on vertebrates [1,2]. However, some research has investigated
40 emotion-like states in invertebrates [3]. In insects, fruitflies have been used as model
41 systems to investigate neuropsychiatric disorders [4] or states resembling anxiety [5] and

42 fear [6]. More recently, studies have investigated insect emotion-like states based on their
43 effects on cognition [7–11]. These experiments use judgement bias tests, which were
44 developed in animal welfare research to infer animal emotional states [7–11]. The tests are
45 based on the idea that emotions can bias information processing [12]. For example, people
46 experiencing anxiety or depression are more likely to make pessimistic judgments and
47 interpret ambiguous information negatively [13]. To assess their relative reactions to
48 ambiguous stimuli, individual animals are first trained to associate one stimulus with a
49 ‘good’ outcome like a reward, and another with a ‘bad’ or less positive outcome, like lower
50 or no rewards, or a punishment. Some animals are then subjected to an intervention - either
51 stressful (e.g., poor housing) or positive (e.g., unexpected reward), while others are
52 unmanipulated and serve as controls. The animals are then tested with ambiguous stimuli
53 designed to be midway between the stimuli indicating good and bad outcomes. If animals
54 experiencing the intervention are more likely than controls to respond as if they expect
55 good or bad outcomes, then it is considered to have made them more optimistic or
56 pessimistic respectively. These results have often been interpreted as evidence for emotion-
57 like states in animals [14].

58 Judgement bias tests have been used in five insect studies [7–11]. In some of them, insects
59 learned to respond to specific odours and not to others [3–5]. Physical agitation
60 subsequently reduced their response to ambiguous odours compared to control insects. In
61 other studies, bees learned to associate one colour with a reward and another colour with
62 no reward [7,11]. After encountering an unexpected reward of sucrose solution, the bees
63 were quicker [7] or more likely [11] to fly towards ambiguous colours.

64 However, four of these five studies [7–9,11] used a go/no-go paradigm, where an animal
65 responds to a positive stimulus (“go”) and suppresses responses to a negative stimulus (“no-
66 go”). Subsequently, the latency to approach, or proportion of “go” responses to, the test
67 stimuli are used to infer an animal’s state. This paradigm has been used in numerous studies
68 across different taxa [14], but the measures in this paradigm may be influenced by factors
69 other than cognitive biases. For example, changes in latency and/or the proportion of “go”
70 responses to ambiguous stimuli could reflect changes in motivation, arousal or attention
71 [15,16]. While motivation and arousal do contribute to emotion-like states, they are
72 different from judgement biases and the evidence for the latter could be strengthened in
73 insects.

74 The likelihood of confounds can be reduced using an active choice judgment bias test
75 [10,17,18]. This paradigm requires the animal to make an active choice between two
76 alternative responses. Animals might, for example, learn to move to one location in
77 response to one stimulus and another location when they see another. Since the animal
78 must make a choice, this type of test eliminates the possible confounding factors of the
79 go/no-go paradigm, increasing validity and ease of interpretation.

80 We therefore used an active choice judgment bias test to rigorously assess judgement biases
81 in bumblebees (*Bombus terrestris*). Bees had to choose between two rewarding locations
82 depending on the stimulus displayed, clearly signalling their judgement when faced with
83 ambiguous stimuli by moving to one of the two locations. To induce negative states, we
84 used two types of manipulations simulating predatory attacks – shaking, and trapping by a
85 robotic arm. These manipulations have previously been shown to be associated with

86 cognitive and physiological changes [7,8]. Using two stressors allowed us to ask how
87 generalizable the cognitive impact would be.

88 Critically, one location in our experiment always contained a high concentration of sucrose
89 (or water) while the other location contained a lower concentration sucrose reward (or
90 water). We hypothesized that stressed bees would be less likely to approach high-reward
91 locations compared to control bees, indicating a judgement bias. If stress instead impaired
92 motivation or attention rather than judgement as has been previously argued [19], we would
93 expect bees to fail to make choices or respond to the stimuli. Shortened choice latencies
94 have also been previously used as an indicator of optimism in bees [7]. We therefore
95 examined the choice latencies in our experiment. We predicted that conversely, if the
96 stressed bees had pessimistic biases, they would have increased choice latencies. Finally,
97 to further understand the mechanisms underlying our behavioural results, we applied drift
98 diffusion and signal detection modelling frameworks to the data. We used these
99 frameworks to test whether judgement biases in bees could be explained by a change in the
100 estimated probability of a reward.

101 **Materials and Methods**

102 *Animals and experimental setup*

103 All experiments were run on female worker bumblebees (*Bombus terrestris*) obtained from
104 a commercial supplier (Koppert, UK). We transferred the bumblebees to one chamber of
105 a bipartite plastic nest box (28.0 × 16.0 × 12.0 cm). We covered the other chamber of the
106 nest box with cat litter to allow bees to discard refuse. The nest box was connected via a

107 transparent acrylic tunnel ($56.0 \times 5.0 \times 5.0$ cm) to a flight arena ($110.0 \times 61.0 \times 40.0$ cm)
108 with a UV-transparent Plexiglas® lid and lit by a lamp (HF-P 1 14-35 TL5 ballast, Philips,
109 The Netherlands) fitted with daylight fluorescent tubes (Osram, Germany). When not part
110 of an experiment, bees were fed with ~ 3 g of commercially obtained pollen daily (Koppert
111 B. V., The Netherlands) and provided sucrose solution (20% w/w) ad libitum. Although
112 invertebrates do not fall under the Animals (Scientific Procedures) Act, 1986 (ASPA), the
113 experimental design and protocols were developed incorporating the 3Rs principles -
114 Replacement, Reduction and Refinement (<http://www.nc3rs.org.uk/>). The housing,
115 maintenance, and experimental procedures used were non-invasive.

116 Visual stimuli were solid colours covering the entire display of an LED monitor (Dell
117 U2412M, 24", 1920 x 1200 px) and controlled by a custom-written MATLAB script
118 (MathWorks Inc., Natick, MA, USA) using the PsychToolbox package [20]. We measured
119 the irradiance of all colours used in the experiment using a spectrophotometer (Ocean
120 Optics Inc., Florida, USA). The perceptual positions of the colours in the bee colour
121 hexagon space (Fig. 1B) were calculated using the irradiance measurements and spectral
122 sensitivity functions for *Bombus terrestris* photoreceptors [21,22].

123 We positioned two vertical panels (40.0×8.0 cm) 8.5 cm in front of the right and left sides
124 of the LED monitor, leaving the central area of the monitor open and visible. Each panel
125 was equipped with an opening to place a reward chamber (7 ml glass vial, 10 mm inner
126 diameter) 7 cm above the arena floor. After each visit to the arena, the reward chambers
127 were changed to ensure pheromones and scent marks were not available during the next

128 visit. In preparation for the next experimental day, all used chambers were washed in hot
129 water and 70% ethanol and left to dry.

130 *Training*

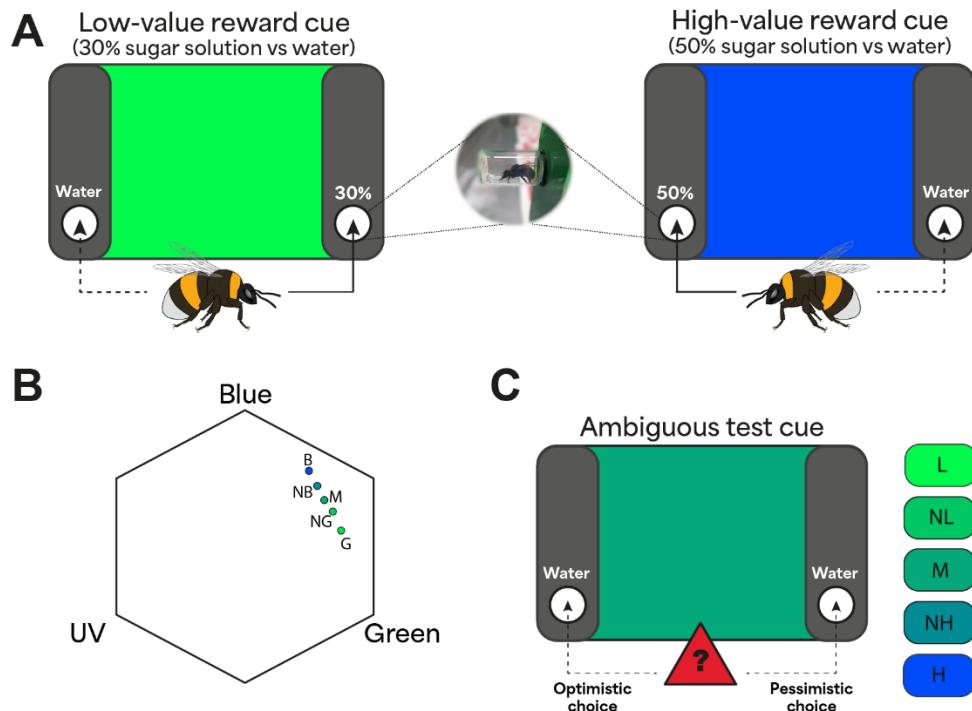
131 Before the onset of training, individual bees were familiarized with both reward locations.
132 A plastic cup was used to gently capture each bee. The opening of the cup was positioned
133 to align with the entrance to the reward chamber, inside which the bee found a droplet of
134 sucrose solution (0.2 ml, 30% w/w). We repeated the procedure equally on each side (left
135 and right) without displaying any colour on the LED screen. Individual bees that learnt the
136 reward location and performed repeated foraging bouts were tagged for later identification
137 using number tags (Thorne, UK). Tagging involved trapping each bee in a marking cage,
138 gently pressing it against the mesh with a sponge, and affixing the tag to the dorsal thorax
139 with superglue (Loctite Super Glue Power Gel).

140 In each training trial, we presented bees ($n = 48$) one of two colours on the LED screen.
141 The colours used were green (RGB= 0, 255, 75) and blue (RGB= 0, 75, 225). For a given
142 bee, one of the colours (e.g. green) always indicated a high-value reward of 0.2 ml 50%
143 (w/w) sucrose solution in one of the two chambers (e.g., on the left), with the other chamber
144 (e.g., on the right) containing an equal amount of distilled water. The other colour (e.g.
145 blue) would be presented in different trials and would always indicate a low-value reward
146 of 0.2 ml 30% (w/w) sucrose solution in the chamber opposite (e.g., on the right) with the
147 other chamber (e.g., on the left) containing an equal amount of distilled water. Thus, on
148 any given trial, the bee saw only one colour and could encounter either the high or low
149 reward (not both), with water on the unrewarding side. High and low rewards were always

150 presented on opposite sides in their respective trials. The volume of reward chosen ensured
151 that the bees were satiated with their visit and would return to the colony after they
152 consumed it.

153 Across bees, the combinations of colour (green or blue), reward location (right or left) and
154 reward type (high or low) were counterbalanced. Each bee encountered only one possible
155 combination during training (e.g., green indicating a high reward on the left on half the
156 trials, and blue indicating a low reward on the right on the other half). Trials presenting
157 colours associated with high and low rewards were presented an equal number of times in
158 a pseudorandom order, ensuring that no colour was repeated more than twice in a row. To
159 ensure that the bee entered the reward chamber fully to sample its content, we placed the
160 rewards at the end of the chamber. In all cases, the reward quantity allowed bees to fill
161 their crop within a single visit [23]. We recorded a single choice on each trial, defined as a
162 bee entering a chamber far enough to sample its content. Incidences of landing or partial
163 entering (less than 1/3 of the body length) were not considered choices. These occurrences
164 were rare and comprised only five out of all our choices. Bees that reached the learning
165 criterion (80% accuracy in the last 20 trials) continued to the test phase. Eleven bees did
166 not pass the initial conditioning test due to strong side biases. The last ten training trials
167 were video recorded using a camera on a mobile phone (Huawei Nexus 6P phone 1440 ×
168 2560 px, 120 fps) placed above the arena. We calculated choice latency by averaging across
169 latencies from the last two training trials of each respective colour.

170



173 **Figure 1. Experimental Protocol.** A) Bees were trained to associate two colours, green
 174 and blue, presented on an LED screen with different sugar rewards at different locations.
 175 The figure depicts a training scenario with green indicating a low reward (30% sucrose
 176 solution) in the right chamber and blue indicating a high reward (50% sucrose solution) in
 177 the left chamber. The association between colour, reward and location was counterbalanced
 178 across trials. Further details in the text. B) Cue colours plotted in bee colour space (colour
 179 cue: B, blue; NB, near blue; M, medium; NG, near green; G, green). The three vertices
 180 correspond to maximum excitation of photoreceptors sensitive to blue, green and
 181 ultraviolet (UV) light. The distance from the centre to any vertex is 1 and the distance

182 between points represents hue discriminability, with 0.1 being easily distinguishable. C)
183 The test phase consisted of five trials with different colours presented on the screen in a
184 pseudorandom order (cue value: H, high; NH, near high; M, medium; NL, near low; L,
185 low). In our example, the screen shows the medium colour with blue as the high-reward
186 colour (H) and green as the low-reward colour (L), but this was counterbalanced across
187 bees. Entering a chamber associated with a high reward or low reward during training was
188 considered optimistic or pessimistic respectively.

189

190 *Predatory attack simulation*

191 Individual bees (n=48 from six colonies) that reached the learning criterion in the training
192 phase were randomly assigned to one of the three treatment groups, using the *sample*
193 function in R. Two groups were subjected to manipulations simulating predatory attacks
194 by shaking (*Shaking*, n=16) or trapping (*Trapping*, n=16). A third unmanipulated group
195 served as a control (*Control*, n=16). The manipulations were applied to a bee before
196 entering the arena for each test. Bees in the Control treatment were allowed to fly out into
197 the flight arena without hindrance as in the training phase.

198 Each bee in the Shaking treatment was allowed to enter a custom-made cylindrical cage
199 (40 mm diameter, 7.5 cm length). After entering, the bee was gently nudged down with a
200 soft foam plunger until the distance between the plunger and the bottom of the cage was
201 reduced to ~3 cm. Once the plunger was secured, the cage with the bee was placed on a
202 Vortex-T Genie 2 shaker (Scientific Industries, USA) and shaken at a frequency of 1200

203 rpm for 60 s. After shaking, the bee was released into the tunnel connecting the nest box
204 and experimental arena via an opening on the top of the tunnel. The bee was released into
205 the flight arena for testing as soon as it was ready to initiate a foraging bout.

206 Each bee in the Trapping treatment was trapped using a device similar to the robotic “spider
207 arms” described in previous studies [7] . The mechanism consisted of a soft sponge (3.5 ×
208 3.5 × 3.5 cm) connected to a linear actuator system (rack and pinion). A micro-servo
209 initiated the linear motion of the trapping device (Micro Servo 9g, DF9GMS), powered
210 and controlled by a microcontroller board (Arduino, Uno Rev 3). A custom-written script
211 written in the Arduino Software (IDE) triggered an initial plunging movement of the
212 trapping device, followed by release after three seconds. This permitted consistent trapping
213 across all individuals. The bee was then released into the flight arena for testing as soon as
214 it was ready to initiate a foraging bout.

215 *Judgement bias testing*

216 The test phase consisted of five trials, each with a cue of a different colour presented on
217 the screen. The test colours were the two conditioned colours (green and blue), and three
218 ambiguous colours of intermediate value between the two conditioned colours (near blue
219 (RGB=0, 140, 150); medium (RGB= 0, 170, 120); near green (RGB= 0, 200, 100); Fig.
220 1B). We classified the ambiguous colours as near-high, medium, and near-low cues
221 depending on their distance to the high or low rewarding colour. The colour presentation
222 order was pseudorandomized between all bees, so that the first test colour was always one
223 of the ambiguous colour cues. During tests, all colour cues were not rewarded, i.e., both
224 chambers contained 0.2 ml of distilled water. After the bee’s first choice, we gently

225 captured it with a plastic cup and returned it to the tunnel connecting the nest and the arena.
226 Between presentations of each of the test cues, bees were provided refresher trials
227 consisting of two presentations of each conditioned colour with the appropriate reward at
228 the correct location. All trials were recorded for video analysis using a mobile phone
229 camera (Huawei Nexus 6P, 1440×2560 px, 120 fps). All experiments and video analyses
230 were run by the experimenter with knowledge of the conditions.

231 *Measuring feeding motivation*

232 Stress can affect an animal's feeding motivation as indicated by the amount of reward
233 consumed [24]. To assess if our manipulations changed bee feeding motivation, we
234 measured reward ingestion rates. A separate group of bees (n=36) were pre-trained to
235 forage from a feeder consisting of the reward chamber with a 1.5 mL Eppendorf placed
236 inside. After learning this location and completing five consecutive foraging bouts, bees
237 were randomly allocated to one of the three treatment groups for the ingestion test (*Control*:
238 n=12, *Shaking*: n=12, *Trapping*: n=12). The test consisted of a single foraging bout on a
239 feeder with sucrose solution (~1 ml, 50% w/w). The feeder was weighed before and
240 immediately after the test bout to determine the mass of ingested solution using a Kern
241 Weighing Scale ADB100-4 (Resolution: mg \pm 0.001, Kern & Sohn, Balingen, Germany).
242 Feeding bouts were recorded using a mobile phone camera (Huawei Nexus 6P, $1440 \times$
243 2560 px, 120 fps). The recordings were used to determine ingestion time, defined as the
244 time from when the bee first touched the sucrose solution with its proboscis until the bee
245 stopped drinking. For each bee, we calculated the absolute ingestion rate i (mg/s):

246
$$i = (m_1 - m_2) / t$$

247 where i is the absolute ingestion rate of a bee, $m1$ is the mass of the feeder before the
248 foraging bout, $m2$ is the mass of the feeder after the foraging bout, and t is the ingestion
249 time of the bee. After it completed the test, the bee was sacrificed by freezing and stored
250 in 70% ethanol at -20°C. We measured the intertegular distance (W) and the length of the
251 glossa of each bee with a digital calliper (RS PRO Digital Calliper, 0.01 mm ± 0.03 mm)
252 under a dissecting microscope. We then adjusted the absolute ingestion rate i to account
253 for individual size variability using the formula:

254
$$I = iW^{(1/3)} G \quad (4),$$

255 where I is the adjusted ingestion rate of a bee, G is the length of the glossa, and W is the
256 intertegular distance. This is an adaptation of the formula developed earlier [25] with
257 intertegular distance instead of weight, as it has been shown to be precise at estimating
258 bumblebee weights [26].

259 To control for evaporation, we placed an additional Eppendorf with 50% sugar solution on
260 the opposite side of the test chamber and recorded its mass before and after each test. The
261 loss of mass due to evaporation was subtracted from the mass of the solution after the
262 foraging bout.

263 *Video analysis*

264 Video analysis was done using BORIS© (Behavior Observation Research Interactive
265 Software, version 7.10.2107) (6). In the judgment bias experiment, we coded two
266 behaviours for each bee. The first, “Choice”, indicated bee entry into a reward chamber
267 and was classified as a point event, an event which happen at a single point in time. The

268 second behaviour, “Latency to choose”, was the time taken to choose and was classified as
269 a state event, i.e., an ongoing event with a duration. For the foraging motivation
270 experiment, we coded a single behaviour, “Drinking duration”, classified as a state event
271 indicating ingestion time.

272 *Statistical analysis*

273 Our hypothesis and statistical analyses of the main active choice experiment were
274 preregistered at aspredicted.com (#62198). The data were plotted and analysed using
275 RStudio v.3.2.2 (The R Foundation for Statistical Computing, Vienna, Austria). To
276 determine the final sample size needed, we used a Bayes Factor approach implemented
277 with the *brms* package (see Supplementary Materials for details) [27–29]. Subsequent
278 statistical models were fit by maximum likelihood estimation and, when necessary,
279 optimized with the iterative algorithms [30]. Models were compared using the *model.sel*
280 function in the *MuMIn* package [31] and the model with the lowest Akaike information
281 criterion (AIC) score was selected as the best model. We used the package DHARMA [32]
282 for residual testing of all models.

283 For the judgment bias analysis, we used the probability of choosing the chamber associated
284 with a high reward as the dependent variable, coding choices of reward chambers
285 previously associated with high-value and low-value cues as 1 and 0 respectively. For ease
286 of discussion, we henceforth call the choices of high-reward chambers “optimistic” and
287 choices of low-reward chambers “pessimistic”. We fit a generalized linear mixed-effect
288 model using the *glmer* function of the *lme4* package with binomial errors and a logit link
289 function. The explanatory variables included in the model were “*Treatment*” (categorical:

290 *Control, Shaken, Trapped*) and “*Cue*” (continuous: 1-5, where 1 = high and 5 = low value
291 cue) which refers to the colour displayed on the screen. The identity of the bee (“*ID*”) was
292 included as a random intercept variable.

293 To analyse choice latency, we fit a linear mixed-effect model using the *lmer* function of
294 the *lme4* package. Latency data were log-transformed and latencies greater than 1.5 times
295 the Inter Quartile Range were excluded (a total of 18 out of 240 data points). The
296 explanatory variables included in the model were “*Treatment*” (categorical: *Control*,
297 *Shaken, Trapped*) and “*Cue*” (continuous: 1-5, where 1 = high and 5 = low value cue). In
298 addition, since we expected optimistic responses to be faster, we included “*Response Type*”
299 (coded as 1 and 0 for optimistic and pessimistic responses respectively) as an explanatory
300 variable. Bee identity (“*ID*”) was included as a random intercept variable.

301 Data for other analyses were first tested for normality before using appropriate tests. We
302 ran a one-way ANOVA on the body-size-adjusted ingestion rate to test for treatment
303 differences. We also used Kruskal-Wallis tests to compare the average number of trials to
304 the criterion in the training phase across treatments, and to investigate the impact of the
305 side and colour associated with a high-value cue.

306 *Signal detection theory model*

307 We examined whether the behaviour of the bees could be modelled with standard signal
308 detection theory [33], and what we could infer about the underlying mechanisms. We
309 assumed that bees learn to make their foraging decision during training based on the value
310 of an internal signal x which indicates whether they are in a high or low reward situation.

311 We specified x as a “low reward signal” with a high value when the cue indicates a low
312 reward. We assumed that bees have some internal decision boundary B , such that when
313 $x > B$, they behave appropriately for the low-reward situation, and conversely when $x < B$ for
314 the high-reward. Although on average the value of x reflects the cue, it is affected by noise,
315 explaining why bees do not always make the same decision in the same experimental
316 situation.

317 Since we have fitted our data with a logistic link function, we modelled the distribution of
318 the noisy signal as the first derivative of a logistic function. This allowed our signal
319 detection model to predict logistic response curves, as we see below. The standard logistic
320 is

321

$$F(x) = \frac{1}{1 + \exp(-x)}$$

322 Equation 1

323 and its first derivative is

324

$$f(x) = \frac{dF}{dx} = \frac{\exp(x)}{[1 + \exp(x)]^2}$$

325 Equation 2

326 which is therefore the distribution we assume for our noise.

327 The probability density function governing the distribution of the signal x is therefore
328 $\frac{1}{\sigma} f\left(\frac{x-C}{\sigma}\right)$, where C represents the value of the cue and σ is the standard deviation of the

329 noise. The probability of an optimistic response on any given trial is the probability that
 330 the value of x on this trial is less than the decision boundary B , given the value of the cue
 331 on this trial. This is

$$332 \quad P_{opt} = \int_{-\infty}^B dx \frac{1}{\sigma} f\left(\frac{x - C}{\sigma}\right) = F\left(\frac{B - C}{\sigma}\right)$$

333 Equation 3

334 As noted above, with the assumption that the noise distribution is the logistic-derivative,
 335 $f(x)$, the probability of an optimistic response is a logistic function of cue C .

336 As well as the cue, the bee's behaviour is influenced by the noise σ and the decision
 337 boundary B . The noise may vary depending on factors like fatigue or attention, while the
 338 decision boundary may reflect a cognitive strategy. A common assumption is that the
 339 decision boundary is chosen to maximize expected reward. We therefore calculated the
 340 expected reward during training.

341 On trials where the cue C was set to C_{Hi} , optimistic responses are made with probability
 342 $F\left(\frac{B-C_{Hi}}{\sigma}\right)$ and rewarded with 50% sucrose, with perceived value denoted as R_{Hi} .
 343 Conversely, pessimistic responses are made with probability $\left[1 - F\left(\frac{B-C_{Hi}}{\sigma}\right)\right]$ and obtain
 344 only water, of value R_w . The average reward experienced on high-value-cue trials is thus

$$345 \quad \langle R \rangle|_{C=C_{Hi}} = R_{Hi}F\left(\frac{B - C_{Hi}}{\sigma}\right) + R_w \left[1 - F\left(\frac{B - C_{Hi}}{\sigma}\right)\right]$$

346 On trials where the cue C was C_{Lo} , optimistic responses are made with probability
 347 $F\left(\frac{B-C_{Lo}}{\sigma}\right)$ and result in water, R_w , whereas pessimistic responses are made with probability
 348 $\left[1 - F\left(\frac{B-C_{Lo}}{\sigma}\right)\right]$ and rewarded with 30% sucrose, R_{Lo} . The average reward on low-cue
 349 trials is thus

$$350 \quad \langle R \rangle|_{C=C_{Lo}} = R_w F\left(\frac{B-C_{Lo}}{\sigma}\right) + R_{Lo} \left[1 - F\left(\frac{B-C_{Lo}}{\sigma}\right)\right]$$

351 Overall, then, the expected reward during training is

$$352 \quad \langle R \rangle = P_{Hi} R_{Hi} F\left(\frac{B-C_{Hi}}{\sigma}\right) + P_{Hi} R_w \left[1 - F\left(\frac{B-C_{Hi}}{\sigma}\right)\right] + P_{Lo} R_{Lo} \left[1 - F\left(\frac{B-C_{Lo}}{\sigma}\right)\right] \\ 353 \quad + P_{Lo} R_w F\left(\frac{B-C_{Lo}}{\sigma}\right)$$

354 Equation 4

355 where P_{Hi} and P_{Lo} represent the probabilities that a given trial offers high or low reward.

356 The optimal boundary B_{opt} , that maximises the expected reward then satisfies the equation

$$357 \quad P_{Hi}(R_{Hi} - R_w)f\left(\frac{B_{opt}-C_{Hi}}{\sigma}\right) = P_{Lo}(R_{Lo} - R_w)f\left(\frac{B_{opt}-C_{Lo}}{\sigma}\right)$$

358 Equation 5

359 (found by taking the derivative of the expected reward, Equation 4, with respect to B and
 360 finding where this is equal to 0).

361 Equation 5 has a simple graphical interpretation (see fitted model in Fig. 3). First, the
 362 probability distributions for high and low reward are rescaled by their estimated probability

363 and by the additional utility of getting the trial right, compared to the water available with
364 the wrong decision. Then, the optimal boundary is where these rescaled distributions cross
365 over (solid vertical lines in Fig. 3). If the cue probabilities and reward utilities were equal,
366 i.e. $P_{Hi}(R_{Hi} - R_w) = P_{Lo}(R_{Lo} - R_w)$, then the optimal decision boundary would be
367 exactly in the middle between the two cue values: $B_{opt} = 0.5(C_{Hi} + C_{Lo})$.

368 *Drift diffusion model*

369 Drift diffusion models shed light on the cognitive processes underlying decision making in
370 choice tasks [34]. They generate estimates of the time taken to accumulate sensory
371 evidence for a particular response and the evidentiary threshold for the response decision.
372 We used this framework to investigate which of these two criteria (or both) were changed
373 due to our stress manipulations.

374 We fit a drift diffusion model to the choice latency data in our three treatments using the R
375 package `rtdists` [35]. The model assumes that the bee accumulates sensory evidence
376 towards a decision and makes the optimistic or pessimistic choice once the evidence has
377 passed a threshold. Pessimistic and optimistic choice thresholds were defined to be at 0 and
378 1 respectively. The decision variable was assumed to begin from a start point z between
379 the two boundaries. It was subject to random noise represented by the diffusion constant s
380 but had a drift rate v towards one or the other boundary, based on the sensory evidence. In
381 our experiment, v should be positive for Cue=1 and negative for Cue=5. In our model, we
382 assumed that v was a linear function of Cue.

383

384 **Results**

385 *Training*

386 During training, 48 bumblebees achieved the learning criterion and continued to the
387 judgment bias test. There were no significant differences in the number of trials required
388 to reach the criterion among bees that experienced the high reward on the right or left
389 location (Kruskal-Wallis test: $\chi^2 = 2.94$, df = 1, p = 0.09). Similarly, there was no significant
390 difference in the total number of trials to criterion for bees experiencing blue or green as
391 the high reward colour (Kruskal-Wallis test: $\chi^2 = 0.94$, df = 1, p = 0.33). The number of
392 trials to criterion also did not differ among bees used in each of the three treatment groups
393 (Kruskal-Wallis test: $\chi^2 = 0.88$, df = 2, p = 0.64).

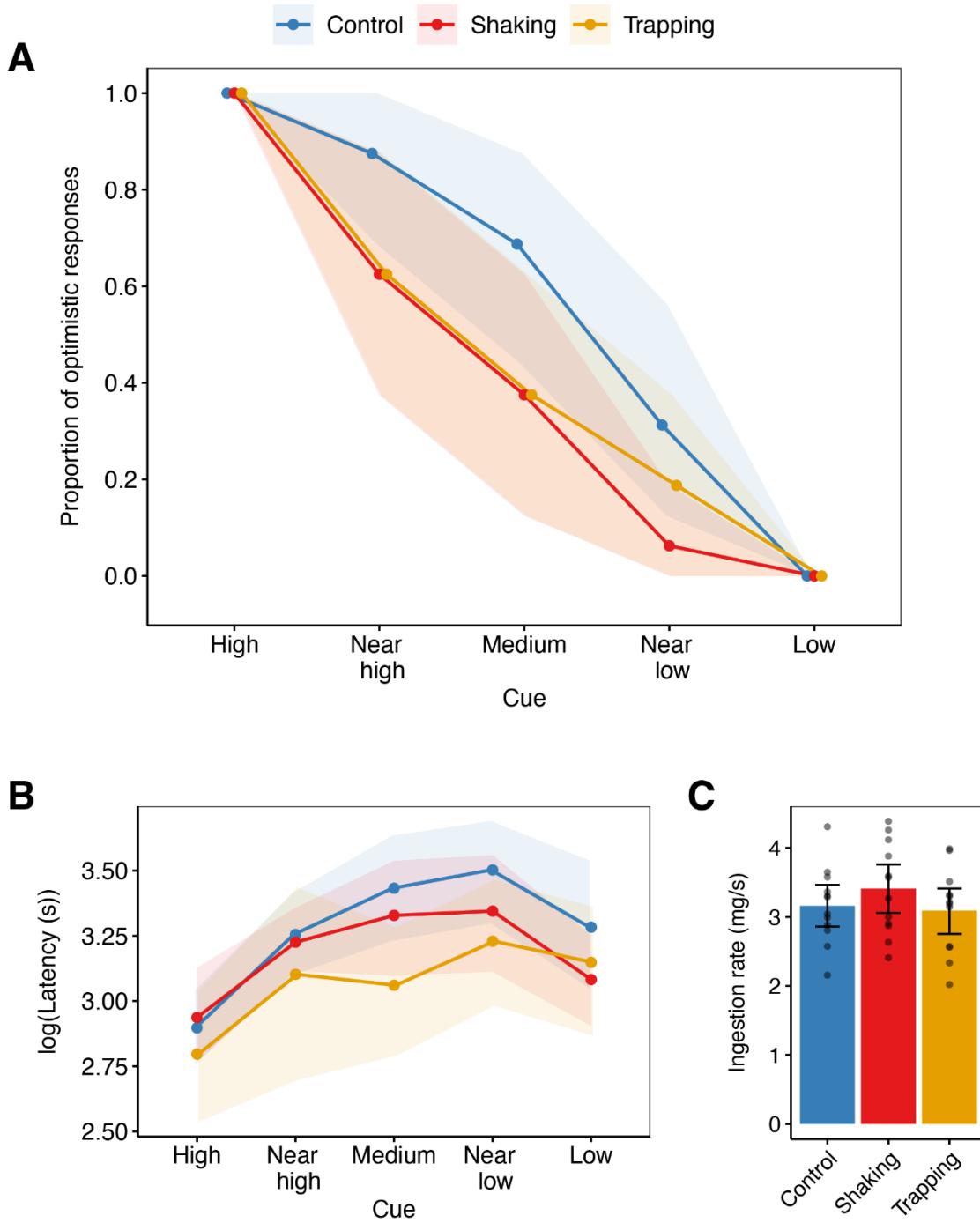
394 Bees took significantly longer to choose a low-reward cue compared to a high reward in
395 the last choices of training (Table S2, LMEM, Estimate \pm S.E. = 0.59 ± 0.09 , $t = 6.79$, $p <$
396 0.001). The difference in latencies demonstrates that the bees could differentiate between
397 both the colour cues and the two rewards.

398 *Physically Stressed Bees are Less Optimistic*

399 The best model for our data included main effects of cue colour and treatment but no
400 interaction effect (see supplementary Table S1 for model selection). Shaking significantly
401 reduced the probability of optimistic responses, i.e., choosing the location associated with
402 a high reward (Fig. 2A, Table S2, GLMM, Estimate \pm S.E. = -1.49 ± 0.57 , $z = -2.61$, $p <$
403 0.01). Trapping also significantly reduced the likelihood of an optimistic response (Fig.
404 2A, Table S2, GLMM, Estimate \pm S.E. = -1.26 ± 0.56 , $z = -2.23$, $p = 0.026$). Bees were

405 also significantly less likely to respond optimistically to cues with colours further away
406 from that of the high reward cue (Fig. 2A, Table S2, GLMM, Estimate \pm S.E. = $-1.79 \pm$
407 0.21 , $z = -8.39$, $p < 0.001$). All bees always made a choice, i.e., bees not responding
408 optimistically responded pessimistically.

409



410

411 **Figure 2. Bee responses to test cues.** **A)** Proportion of bees (N = 16 per treatment) making
 412 an optimistic choice (choosing a reward chamber associated with high reward) in response
 413 to each of five cues. **B)** Response latency to each of five cue values (N = 16 bees per

414 treatment). **C)** Average ingestion rate of high reward (50% sugar solution) for bees in each
415 treatment group ($N = 12$ bees per treatment). The treatment groups were control (blue),
416 shaking (red), and trapping (orange). The test cues were high, near high, medium, near low,
417 and low value cues depending on their distance to the colours of high- and low-reward
418 cues. Points and bars represent means. Shaded areas and error bars represent 95%
419 bootstrapped confidence intervals. Dots represent values from individual bees.

420

421 *Choice Latencies and Feeding Motivation*

422 The best-fitting model for choice latency during tests included treatment, cue value and
423 response type (optimistic or pessimistic) as fixed predictors and an interaction between cue
424 value and response type (supplementary Table S1). Bees in the Trapping treatment were
425 significantly faster to make a choice than control bees (Fig. 2B, Table S2, LMEM, Estimate
426 \pm S.E. = -0.23 ± 0.1 , t value = -2.25 , $p = 0.029$). Shaken bees were not significantly faster
427 to make their choices than control bees (Fig. 2B, Table S2, LMEM, Estimate \pm S.E. = $-$
428 0.11 ± 0.10 , t value = -1.121 , $p = 0.27$). All bees were significantly slower to make a choice
429 when the cue colour was further away from that of the high reward cue (LMEM, Estimate
430 \pm S.E. = -0.09 ± 0.03 , t value = -2.6 , $p < 0.01$). Bees were faster when making optimistic
431 choices compared to pessimistic ones (LMEM, Estimate \pm S.E. = -0.93 ± 0.16 , t = -5.74 , p
432 < 0.001). Additionally, a significant interaction between cue value and response type

433 (LMEM, Estimate \pm S.E. $= 0.262 \pm 0.051$, $p < 0.001$) indicated that the decrease in latency
434 with increasing cue value was more pronounced for optimistic responses.

435

436 The mean ingestion rates in our feeding motivation experiment did not differ significantly
437 between treatment groups (Fig. 2C, ANOVA: $F(2, 33) = 0.881$, $p = 0.424$).

438 *Signal Detection Theory Model*

439 According to a standard signal-detection theoretic approach, the probability that a bee
440 makes an optimistic choice for Cue level C is (Equation 3)

$$441 \quad P_{opt} = F\left(\frac{B - C}{\sigma}\right),$$

442 where σ is the noise on the internal signal, B is the decision boundary, and F is the logistic
443 function. This is exactly the model fitted by our generalized linear mixed model (GLMM,
444 see above), with the fitted gradient for *Cue* corresponding to $-1/\sigma$ and the intercept
445 corresponding to B/σ . Thus, the fact that we found no interaction between *Cue* and
446 *Treatment* suggests that the effective noise level is not changed by our manipulations. The
447 estimate of -1.79 for the gradient (Table S2) allows us to infer an effective noise level of σ
448 = 0.56, in our units where *Cue* runs from 1 (high reward) to 5 (low reward).

449

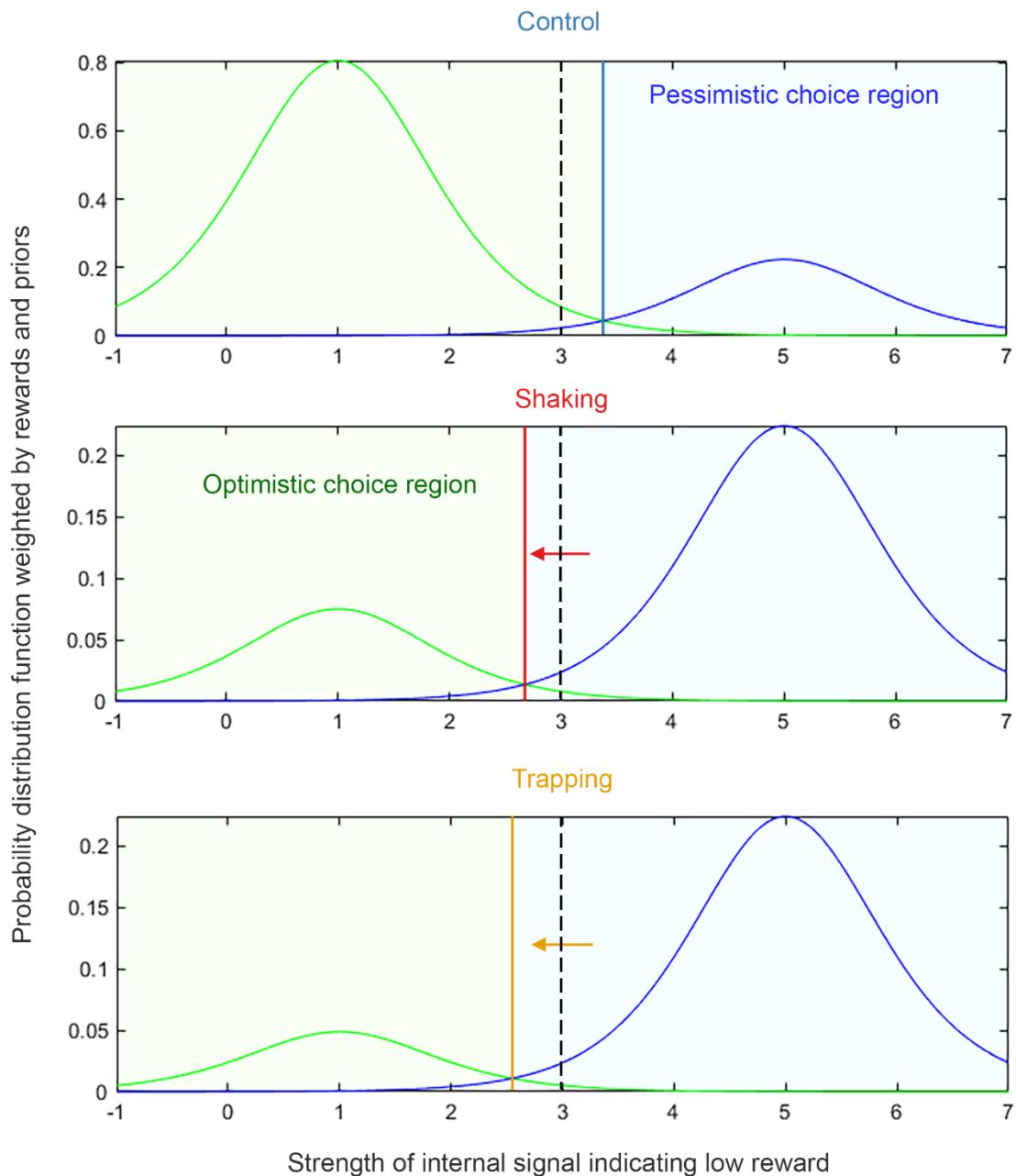
450 However, the significant main effect of *Treatment* indicates that the decision boundary was
451 different in the two cases. The estimate of 6.05 (Table S2) for the intercept in the control
452 condition implies that the decision boundary in this condition is 3.38. Bees in the Control
453 treatment are thus equally likely to make optimistic or pessimistic responses when the cue
454 is a little closer to “near low” than medium (3). The fact that the intercept drops by -1.49

455 for the Shaking treatment and -1.26 for Trapping (Table S2) implies that the boundary
456 shifts leftward to 2.55 and 2.68, respectively, in these conditions. The point at which these

457 bees are equally likely to make optimistic and pessimistic choices is closer to “near high”

458 than to medium (Fig. 3).

459



460

461 **Figure 3. Bee decision-making boundaries and priors fitted by a signal-detection
462 model.** Curves depict the probability density functions for responses based on the internal
463 signal x indicating a low reward. In each case, the original distribution has been weighted
464 by the product of the value of that reward and its probability of occurring (see Equation 5).
465 The two curves in each panel depict the probabilities that the cue indicates high reward
466 (green, centred on 1) or low reward (blue, centred on 5). Solid lines depict the decision
467 boundary B inferred from the model fit to our data. Dotted lines indicate the medium point
468 for comparison. Regions to the right of the solid boundary line are regions where the bee
469 makes pessimistic choices (shaded blue). Regions to the left are regions where the bee
470 makes optimistic choices (shaded green). Arrows depict the shift in boundaries compared
471 to the control condition. The three panels depict the conditions for the Control (top),
472 Shaking (middle) and Trapping (bottom) treatments. Note the change in axes in the lower
473 two panels.

474

475 In our fitted model, weighted probability distributions for both low and high rewards have
476 an equal spread, reflecting the noise level inferred from the GLMM. In the Control
477 treatment, the shift of the decision boundary reflects the greater weight given to the high
478 reward. Quantitatively, the extent of the shift, together with the fitted noise level, implies
479 that the high reward is given 3.6 times the weight of the low reward. This result also cannot
480 be explained merely by the bees not perceiving the medium colour as midway between
481 blue and green since both the high and low reward trials combine data from trials where
482 the cue was blue and trials where it was green. Instead, this result might, for example,

483 suggest that the bees understand that both rewards are equally likely ($P_{Hi} = 50\%$) and find
484 the 50% sucrose solution 3.6 times as rewarding, relative to water, as the 30% solution.

485

486 The fact that the decision boundary is to the left of neutral in the Shaking and Trapping
487 treatments suggests that here, greater weight is given to the low reward (Fig. 3). Assuming
488 we can discount the possibility that the reward value has inverted (i.e., that stressed bees
489 find 30% sucrose more rewarding than 50%), this must represent a shift in their estimates
490 of reward probabilities, such that stressed bees now consider high-reward trials less likely.

491 To match the extent of the leftward shift, given the noise level inferred from our GLMM
492 fit, the low reward must be weighted 4.6 times as much as the high reward. If the reward
493 ratio were 3.6, this would imply that the bees behave as if the perceived probability of the
494 high reward was 6%. However, if stressed bees find 50% and 30% sucrose equally
495 valuable, i.e., the stress has removed the difference in reward utility, then the observed shift
496 in decision boundary could be produced with a less dramatic shift in estimated probability,
497 with perceived probability of the high reward being 18%.

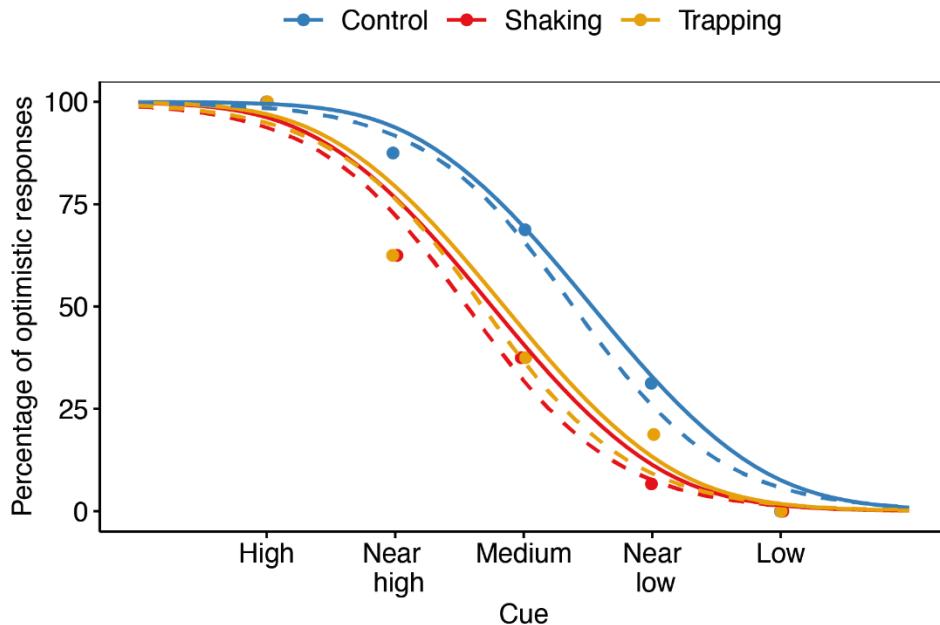
498

499 *Drift Diffusion Model*

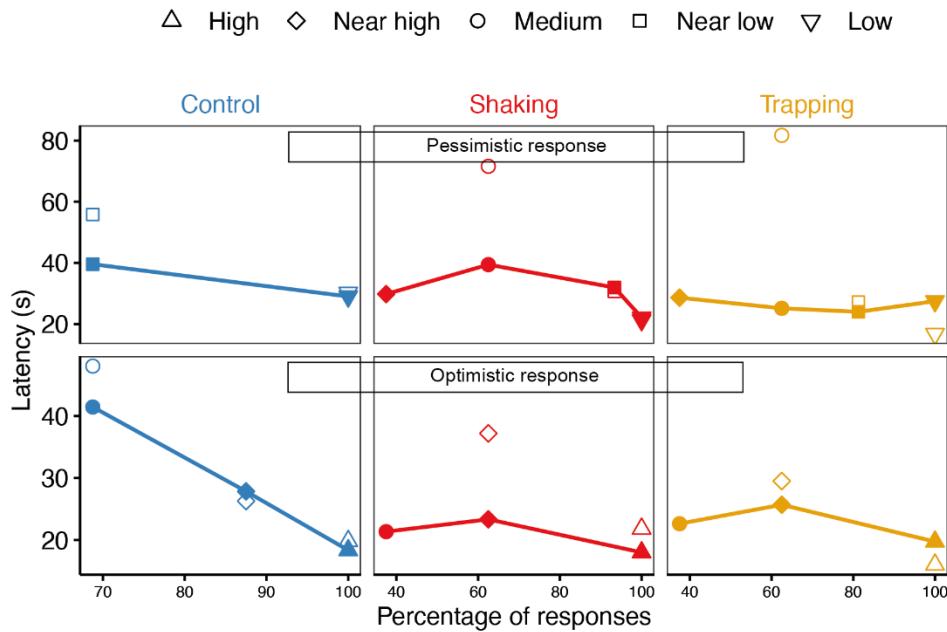
500 Our best model was obtained by allowing the time before making a decision and the value
501 of the drift rate for $Cue = 3$ (v3) to vary between treatments, while fitting all data with the
502 same values for the diffusion constant s , start point zr , the dependence of drift rate on cue,
503 $vGradient$, and noise on the drift rate, sv . The drift diffusion model predicts not only the
504 bees' choices (Fig. 4A) but also the latencies for both optimistic and pessimistic choices
505 (Fig. 4B). There are not enough trials to accurately estimate the latency distributions (just

506 16 trials for each *Cue/Treatment* combination, thus < 16 for each choice). The model for
 507 latencies is, therefore, not a good fit (Fig. 4B). With that caveat, the fitted model implies a
 508 few key points.

A



B



509

510 **Figure 4. Drift diffusion model. A)** Proportion of optimistic choices made by the bees in
511 each treatment in response to the different cues. Points show the data, dashed curves show
512 the predictions of a fitted logistic regression model with main effects of Treatment and Cue
513 but no interaction. Solid curves show predictions of a fitted drift diffusion model. Colours
514 depict the different treatments: Control (blue), Shaking (red) and Trapping (orange). **B)**
515 Drift diffusion model fit to latencies. Filled symbols linked with lines show median
516 latencies as a function of the percentage of responses made for pessimistic (top) and
517 optimistic (bottom) responses in the three treatments (columns). Empty symbols show
518 predictions of the fitted drift diffusion model. Symbols show Cue value. There is a high
519 percentage of optimistic responses for high (triangles) and near high (diamonds) cues and
520 a high proportion of pessimistic responses for low (inverted triangles) and near low
521 (squares) cues.

522

523

524 Firstly, by default, bees tend to be biased towards the more rewarding choice. The start
525 point for the decision variable is not midway between the two boundaries, 0.5, but closer
526 to the boundary for the optimistic choice, 0.56. Secondly, stress did not affect sensory
527 noise. We found that the best model was again obtained by assuming that sensory noise,
528 was the same for all groups. Thirdly, stressed bees spend less time on non-decision activity:
529 the model fitted more time on non-decision activity (e.g., flying across the arena) for the
530 control bees than for the shaken or trapped bees. This could perhaps suggest that stressed
531 bees might not want to spend time exploring what could potentially be a dangerous
532 environment. Finally, this model also confirms that the stressed bees are more pessimistic.

533 This is shown by the fitted drift rate for the medium cue, $Cue = 3$. In the absence of bias,
534 the drift rate should have been zero in this case since the cue was designed to be exactly
535 midway between the high and low reward cues. Control bees nevertheless showed a small
536 positive drift rate for this cue, indicating that they took it as weak evidence for high reward.
537 However, shaken and trapped bees both showed a small negative drift rate, indicating
538 perceived weak evidence for low reward. This is what accounts for the leftward shift in the
539 response curves for stressed bees. Note that even though, according to the model, all bees
540 start slightly biased towards a high-reward response ($z = 0.55$), in stressed bees, the
541 negative drift rate for the medium cue is enough to bias responses towards the pessimistic
542 response.

543

544 **Discussion**

545 Our results show that in response to ambiguous cues, stressed bees were less likely than
546 control bees to choose locations that were previously high rewarding. Our models suggest
547 that this is due to a reduced estimate of the probability of high rewards.

548

549 Most studies of judgment bias use a go/no-go paradigm. The results of these studies can be
550 challenging to interpret due to confounds from other factors that do not involve stimulus
551 judgements such as, for example, motivation [19]. Our active choice design avoids these
552 complications, so motivation alone cannot explain the observed shift in responses. This is
553 further supported by our ingestion rate experiment, which shows no differences in feeding
554 motivation. Furthermore, in one previous test of insect judgment biases, shaken honeybees
555 showed a decreased proportion of “go” responses not only to ambiguous odour mixtures

556 but also to the conditioned negative odour [8]. This decrease could indicate an improved
557 ability to differentiate odours rather than a negative bias in judgement [36]. In our
558 experiment, however, the bees were perfectly accurate when responding to both
559 conditioned cues in the tests. Our manipulations thus did not impair the colour
560 discrimination abilities and memory of the bees.

561

562 Response latencies in judgement bias tests can be particularly difficult to interpret. For
563 instance, exposure to a positive event has been reported to cause both longer [37] and
564 shorter [38] response times to ambiguous stimuli. Increased latencies may also be
565 associated with a general increase in reactivity and arousal, due to, say, the increased
566 energetic demands of stressful events [39]. It may also indicate a shift in the perceived
567 value of the reward and differences in motivation [40]. Shorter latencies to ambiguous cues,
568 on the other hand, could result from factors like neophobia rather than negative
569 interpretations of those cues [41].

570

571 Only one study has used latencies to measure judgment biases in bees [7]. This study
572 demonstrated an optimistic bias in bumblebees, showing that unexpected sugar solution
573 rewards reduced the latency with which bees approached ambiguous stimuli. However, the
574 treatment also caused an increase in thoracic temperature which has been linked to
575 increased foraging motivation [42]. Despite the study's controls, motivation and arousal
576 alone could potentially explain these results [19]. In our study, trapped bees had shorter
577 latencies than control bees. Based on the approach in the previous study, this could suggest
578 an optimistic bias. However, this interpretation would be misleading, as changes in feeding

579 motivation or general arousal can also cause faster latencies. While arousal is widely used
580 to characterize emotional states, both positive and negative states can involve increased
581 arousal levels [43]. Our design allows us to more reliably use active choices to indicate
582 affective valence. In the absence of active choices, it is difficult to determine whether
583 increased approach latencies indicate changes in emotional valence or merely changes in
584 motivation. It is also important to note that our different treatments kept the bee out of the
585 colony for differing amounts of time. This could additionally contribute to stress levels and
586 have an influence on response latencies.

587

588 One previous study has used an active choice design to study judgement biases in insects
589 [10]. In that study, flies were trained to associate two odours, with either a reward or a
590 punishment. Our study instead uses rewards of different quality, allowing us to investigate
591 how states modulate expectations and perceptions of reward. Using paradigms involving
592 reward and punishment can make it easier to detect affect-dependent judgement bias
593 compared to paradigms with two rewards [14]. Therefore, finding a bias using two rewards,
594 as we do, provides robust evidence for affect-dependent processing in insects.

595

596 Measuring active choices also allowed us to use a signal detection approach. This has been
597 suggested as a valuable tool for investigating affective disorders but has rarely been applied
598 in human clinical studies [44]. A recent study suggested that judgement biases in bees may
599 be caused by a shift in stimulus-response gradients [11]. However, this study did not
600 investigate the underlying cognitive mechanisms of this shift. In our model, the estimation
601 of future outcomes combines estimates of the probability of an outcome and the magnitude

602 of the payoff from an outcome. Our models demonstrate that control bees respond more
603 optimistically to ambiguous cues, indicating an expectation of high rewards. Such a bias
604 would in fact what is predicted by a rational, fully informed strategy which optimises
605 expected reward. Even if the bees are estimating the probabilities correctly as 50-50, the
606 difference in reward utility will still shift the decision boundary towards the cue indicating
607 low reward (Fig. 3).

608

609 The decision boundary and drift rate for the stressed bees are harder to interpret. Here, the
610 decision boundary is to the *left* of neutral and the drift rate is negative. Previous studies
611 have shown that acute stress can increase an animal's sensitivity to the reward [45].
612 However, the observed left shift of the decision boundary in stressed bees cannot plausibly
613 reflect such a change in sensitivity since a leftward shift could only be produced if the value
614 of high and low rewards were swapped, i.e., if 50% sucrose became less rewarding than
615 30%. However, it could reflect a pessimistic bias in expectations, i.e., that the stressed bees
616 behave as if high rewards are less likely ($P_{Hi} < P_{Lo}$). This can account for a leftward shift,
617 but the large quantitative extent of the shift is still surprising. Since the noise remains
618 relatively small, as indicated by the perfect performance for high and low cues, we have to
619 postulate enormous changes in the priors to produce the observed shift. To obtain the
620 decision boundary of 2.55 inferred for shaken bees, we would have to postulate that shaken
621 bees estimate $P_{Lo} = 94\%$, i.e., they expect a high reward to be available on only one trial in
622 20. This assumes that the reward utility remains the same. If the relative utility of the high
623 reward increased, e.g., because of an increased need for sucrose after stress [39], the
624 estimated probabilities would have to shift even further from 50%. However, one

625 possibility is that, contrary to the assumptions of our model, the noise was not uniform for
626 all cues, and there was more sensory noise on intermediate values of the cue. If so, the
627 change in probabilities would not need to be as dramatic, although the basic result of
628 changed probabilities would remain true.

629

630 Could the pessimistic judgements of the bees be adaptive? Emotions have evolved to guide
631 behaviour by informing animals about their success in obtaining resources and avoiding
632 dangers in their environment [43]. Pessimism, for example, could be an adaptive strategy
633 in a dangerous and unpredictable environment [46]. A pessimist is more likely to avoid
634 risky decisions that could jeopardize gains in pursuit of more rewarding opportunities,
635 which, in unfavourable environments, could be unlikely. In our study, stressed bees
636 experience a simulated predatory attack. This could exhaust their energetic stores and
637 signal a dangerous environment. In response to the attack, the bees lowered their reward
638 expectations. This could reflect more cautious behaviour, a potentially adaptive strategy in
639 a dangerous environment. Our results thus suggest the possibility of shared adaptive
640 responses across diverse taxa.

641

642 While the present study further validates the capacity of bees for emotion-like states, the
643 mechanisms behind these behaviours remain largely unknown. Future research should
644 focus on understanding how these states are generated and sustained. Clarifying these
645 mechanisms will help determine whether the observed states share a common ancestry with
646 similar states in vertebrates or are distinct and result from convergent evolution.

647

648 **Data availability statement**

649 All relevant data and code used for analysis to support this paper are available as supporting
650 information.

651 **Competing Interest Statement:** The authors declare no competing interest.

652 **References**

- 653 1. Panksepp J. 2011 The basic emotional circuits of mammalian brains: Do animals
654 have affective lives? *Neurosci. Biobehav. Rev.* **35**, 1791–1804.
655 (doi:10.1016/j.neubiorev.2011.08.003)
- 656 2. Paul ES, Sher S, Tamietto M, Winkielman P, Mendl MT. 2020 Towards a
657 comparative science of emotion: Affect and consciousness in humans and animals.
658 *Neurosci. Biobehav. Rev.* **108**, 749–770. (doi:10.1016/j.neubiorev.2019.11.014)
- 659 3. Perry CJ, Baciadonna L. 2017 Studying emotion in invertebrates: What has been
660 done, what can be measured and what they can provide. *J. Exp. Biol.* **220**, 3856–
661 3868. (doi:10.1242/jeb.151308)
- 662 4. O’Kane CJ. 2011 Drosophila as a Model Organism for the Study of
663 Neuropsychiatric Disorders. In *Molecular and Functional Models in*
664 *Neuropsychiatry* (ed JJ Hagan), pp. 37–60. Berlin Heidelberg: Springer-Verlag.
665 (doi:10.1007/7854)
- 666 5. Mohammad F, Aryal S, Ho J, Stewart JC, Norman NA, Tan TL, Eisaka A,
667 Claridge-Chang A. 2016 Ancient Anxiety Pathways Influence Drosophila Defense
668 Behaviors. *Curr. Biol.* **26**, 981–986. (doi:10.1016/j.cub.2016.02.031)

669 6. Gibson WT *et al.* 2015 Behavioral responses to a repetitive visual threat stimulus
670 express a persistent state of defensive arousal in drosophila. *Curr. Biol.* **25**, 1401–
671 1415. (doi:10.1016/j.cub.2015.03.058)

672 7. Solvi C, Baciadonna L, Chittka L. 2016 Unexpected rewards induce dopamine-
673 dependent positive emotion-like state changes in bumblebees. *Science (80-.*). **353**,
674 1529–1531. (doi:10.1126/science.aaf4454)

675 8. Bateson M, Desire S, Gartside SE, Wright GA. 2011 Agitated honeybees exhibit
676 pessimistic cognitive biases. *Curr. Biol.* **21**, 1070–1073.
677 (doi:10.1016/j.cub.2011.05.017)

678 9. Schlüns H, Welling H, Federici JR, Lewejohann L. 2017 The glass is not yet half
679 empty: agitation but not Varroa treatment causes cognitive bias in honey bees.
680 *Anim. Cogn.* **20**, 233–241. (doi:10.1007/s10071-016-1042-x)

681 10. Deakin A, Mendl M, Browne WJ, Paul ES, Hodge JJL. 2018 State-dependent
682 judgement bias in Drosophila: evidence for evolutionarily primitive affective
683 processes. *Biol. Lett.* **14**. (doi:10.1098/rsbl.2017.0779)

684 11. Strang C, Muth F. 2023 Judgement bias may be explained by shifts in stimulus
685 response curves. *R. Soc. Open Sci.* **10**. (doi:10.1098/rsos.221322)

686 12. Harding EJ, Paul ES, Mendl M. 2004 Cognitive bias and affective state. *Nature*
687 **427**, 312. (doi:10.1038/427312a)

688 13. Wright WF, Bower GH. 1992 Mood effects on subjective probability assessment.

689 *Organ. Behav. Hum. Decis. Process.* **52**, 276–291. (doi:10.1016/0749-
690 5978(92)90039-A)

691 14. Lagisz M, Zidar J, Nakagawa S, Neville V, Sorato E, Paul ES, Bateson M, Mendl
692 M, Løvlie H. 2020 Optimism, pessimism and judgement bias in animals: A
693 systematic review and meta-analysis. *Neurosci. Biobehav. Rev.* **118**, 3–17.
694 (doi:10.1016/j.neubiorev.2020.07.012)

695 15. Mendl M, Burman OHP, Parker RMA, Paul ES. 2009 Cognitive bias as an
696 indicator of animal emotion and welfare: Emerging evidence and underlying
697 mechanisms. *Appl. Anim. Behav. Sci.* **118**, 161–181.
698 (doi:10.1016/j.applanim.2009.02.023)

699 16. Bethell EJ. 2015 A “How-To” Guide for Designing Judgment Bias Studies to
700 Assess Captive Animal Welfare. *J. Appl. Anim. Welf. Sci.* **18**, S18–S42.
701 (doi:10.1080/10888705.2015.1075833)

702 17. Whittaker AL, Barker TH. 2020 A consideration of the role of biology and test
703 design as confounding factors in judgement bias tests. *Appl. Anim. Behav. Sci.* **232**,
704 105126. (doi:10.1016/j.applanim.2020.105126)

705 18. Matheson SM, Asher L, Bateson M. 2008 Larger , enriched cages are associated
706 with ‘optimistic’ response biases in captive European starlings (*Sturnus vulgaris*
707). *Appl. Anim. Behav. Sci.* **109**, 374–383. (doi:10.1016/j.applanim.2007.03.007)

708 19. Baracchi D, Lihoreau M, Giurfa M. 2017 Do Insects Have Emotions? Some

709 Insights from Bumble Bees. *Front. Behav. Neurosci.* **11**, 2015–2018.

710 (doi:10.3389/fnbeh.2017.00157)

711 20. Brainard DH. 1997 The Psychophysics Toolbox. *Spat. Vis.* **10**, 433–436.

712 (doi:<https://doi.org/10.1163/156856897X00357>)

713 21. Chittka L. 1992 The colour hexagon: a chromaticity diagram based on
714 photoreceptor excitations as a generalized representation of colour opponency. *J.*
715 *Comp. Physiol. A* **170**, 533–543.

716 22. Skorupski P, Döring TF, Chittka L. 2007 Photoreceptor spectral sensitivity in
717 island and mainland populations of the bumblebee, *Bombus terrestris*. *J. Comp.*
718 *Physiol. A Neuroethol. Sensory, Neural, Behav. Physiol.* **193**, 485–494.

719 (doi:10.1007/s00359-006-0206-6)

720 23. Pattrick JG, Symington HA, Federle W, Glover BJ. 2020 The mechanics of nectar
721 offloading in the bumblebee *Bombus terrestris* and implications for optimal
722 concentrations during nectar foraging. *J. R. Soc. Interface* **17**, 1–10.

723 24. Clarkson JM, Dwyer DM, Flecknell PA, Leach MC, Rowe C. 2018 Handling
724 method alters the hedonic value of reward in laboratory mice. *Sci. Rep.* **8**, 1–8.

725 (doi:10.1038/s41598-018-20716-3)

726 25. Harder LD. 1983 Flower handling efficiency of bumble bees: morphological
727 aspects of probing time. *Oecologia* **57**, 274–280. (doi:10.1007/BF00379591)

728 26. Hagen M, Dupont YL. 2013 Inter-tegular span and head width as estimators of

729 fresh and dry body mass in bumblebees (*Bombus spp.*). *Insectes Soc.* **60**, 251–257.

730 (doi:10.1007/s00040-013-0290-x)

731 27. Bürkner PC. 2017 brms: An R package for Bayesian multilevel models using Stan.

732 *J. Stat. Softw.* **80**. (doi:10.18637/jss.v080.i01)

733 28. Schönbrodt FD, Wagenmakers E, Zehetleitner M, Perugini M. 2017 Sequential

734 Hypothesis Testing With Bayes Factors : Efficiently Testing Mean Differences.

735 *Psychol. Methods* **22**, 322–339.

736 29. Moerbeek M. 2021 Bayesian updating: increasing sample size during the course of

737 a study. *BMC Med. Res. Methodol.* **21**, 137. (doi:10.1186/s12874-021-01334-6)

738 30. Powell M J. 2009 The BOBYQA algorithm for bound constrained optimization

739 without derivatives. *Cambridge NA Rep. NA2009/06* **26**, 26–46.

740 31. Barton K. 2023 Package ‘ MuMIn ’ Multi-Model Interface. *R Interface*

741 32. Hartig F. 2020 DHARMA: residual diagnostics for hierarchical (multi-level/mixed)

742 regression models. *R Packag. version 0.3 3*

743 33. Green DM, Swets JA. 1966 *Signal Detection Theory and Psychophysics*. New

744 York: Wiley.

745 34. Ratcliff R, McKoon G. 2008 The Diffusion Decision Model: Theory and Data for

746 Two-Choice Decision Tasks. *Neural Comput.* **20**, 873–922.

747 35. Singmann H, Brown S, Gretton M, Heathcote A, Voss A, Voss J, Terry A. 2018

748 Package ‘rtdists’. (doi:10.1162/neco.2008.12-06-420)

749 36. Giurfa M. 2013 Cognition with few neurons: Higher-order learning in insects.
750 *Trends Neurosci.* **36**, 285–294. (doi:10.1016/j.tins.2012.12.011)

751 37. Burman O, McGowan R, Mendl M, Norling Y, Paul E, Rehn T, Keeling L. 2011
752 Using judgement bias to measure positive affective state in dogs. *Appl. Anim.*
753 *Behav. Sci.* **132**, 160–168. (doi:10.1016/j.applanim.2011.04.001)

754 38. Verbeek E, Ferguson D, Quinquet de Monjour P, Lee C. 2014 Generating positive
755 affective states in sheep: The influence of food rewards and opioid administration.
756 *Appl. Anim. Behav. Sci.* **154**, 39–47. (doi:10.1016/j.applanim.2014.02.011)

757 39. Even N, Devaud JM, Barron AB. 2012 General stress responses in the honey bee.
758 *Insects* **3**, 1271–1298. (doi:10.3390/insects3041271)

759 40. Karagiannis CI, Burman OHP, Mills DS. 2015 Dogs with separation-related
760 problems show a ‘less pessimistic’ cognitive bias during treatment with fluoxetine
761 (ReconcileTM) and a behaviour modification plan. *BMC Vet. Res.* **11**, 1–10.
762 (doi:10.1186/s12917-015-0373-1)

763 41. Hintze S, Roth E, Bachmann I, Würbel H. 2017 Toward a Choice-Based Judgment
764 Bias Task for Horses. *J. Appl. Anim. Welf. Sci.* **20**, 123–136.
765 (doi:10.1080/10888705.2016.1276834)

766 42. Sadler N, Nieh JC. 2011 Honey bee forager thoracic temperature inside the nest is
767 tuned to broad-scale differences in recruitment motivation. *J. Exp. Biol.* **214**, 469–

768 475. (doi:10.1242/jeb.049445)

769 43. Mendl M, Burman OHP, Paul ES. 2010 An integrative and functional framework
770 for the study of animal emotion and mood. *Proc. R. Soc. B* **277**, 2895–2904.
771 (doi:10.1098/rspb.2010.0303)

772 44. Locke SM, Robinson OJ. 2021 Affective Bias Through the Lens of Signal
773 Detection Theory. *Comput. Psychiatry* **5**, 4–20. (doi:10.5334/cpsy.58)

774 45. Hernandez CE, Hinch G, Lea J, Ferguson D, Lee C. 2015 Acute stress enhances
775 sensitivity to a highly attractive food reward without affecting judgement bias in
776 laying hens. *Appl. Anim. Behav. Sci.* **163**, 135–143.
777 (doi:10.1016/j.applanim.2014.12.002)

778 46. Leahy RL. 2002 The Evolution of Negativity. *J. Cogn. Psychother. An Int. Q.* **16**,
779 295–317.

780