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Abstract 17 

Emotion-like states in animals are commonly assessed using judgment bias tests, that 18 

measure judgements of ambiguous cues. Some studies have used these tests to argue for 19 
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emotion-like states in insects. However, most of these results could have other 20 

explanations, including changes in motivation and attention. To control for these 21 

explanations, we developed a novel judgment bias test, requiring bumblebees to make an 22 

active choice indicating their interpretation of ambiguous stimuli. Bumblebees were 23 

trained to associate high or low rewards, in two different reward chambers, with distinct 24 

colours. We subsequently presented bees with ambiguous colours between the two learnt 25 

colours. In response, physically stressed bees were less likely than control bees to enter the 26 

reward chamber associated with high reward. Signal detection and drift diffusion models 27 

showed that stressed bees were more likely to choose low reward locations in response to 28 

ambiguous cues. The signal detection model further showed that the behaviour of stressed 29 

bees was explained by a reduction in the estimated probability of high rewards. We thus 30 

provide strong evidence for judgement biases in bees and suggest that their stress-induced 31 

behaviour is explained by reduced expectation of higher rewards, as expected for a 32 

pessimistic judgement bias. 33 

Keywords: bumblebee, judgment bias, emotion, signal detection theory, drift diffusion, 34 

pessimism 35 

Introduction 36 

The presence of emotions in non-human animals is much debated and can have important 37 

societal implications for how we treat animals and assess their welfare. Most research on 38 

animal emotions has focused on vertebrates [1,2]. However, some research has investigated 39 

emotion-like states in  invertebrates [3]. In insects, fruitflies have been used as model 40 

systems to investigate neuropsychiatric disorders [4] or states resembling anxiety [5] and 41 
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fear [6]. More recently, studies have investigated insect emotion-like states based on their 42 

effects on cognition  [7–11]. These experiments use judgement bias tests, which were 43 

developed in animal welfare research to infer animal emotional states [7–11]. The tests are 44 

based on the idea that emotions can bias information processing [12]. For example, people 45 

experiencing anxiety or depression are more likely to make pessimistic judgments and 46 

interpret ambiguous information negatively [13]. To assess their relative reactions to 47 

ambiguous stimuli, individual animals are first trained to associate one stimulus with a 48 

‘good’ outcome like a reward, and another with a ‘bad’ or less positive outcome, like lower 49 

or no rewards, or a punishment. Some animals are then subjected to an intervention - either 50 

stressful (e.g., poor housing) or positive (e.g., unexpected reward), while others are 51 

unmanipulated and serve as controls. The animals are then tested with ambiguous stimuli 52 

designed to be midway between the stimuli indicating good and bad outcomes. If animals 53 

experiencing the intervention are more likely than controls to respond as if they expect 54 

good or bad outcomes, then it is considered to have made them more optimistic or 55 

pessimistic respectively. These results have often been interpreted as evidence for emotion-56 

like states in animals [14]. 57 

Judgement bias tests have been used in five insect studies [7–11]. In some of them, insects 58 

learned to respond to specific odours and not to others [3-5]. Physical agitation 59 

subsequently reduced their response to ambiguous odours compared to control insects. In 60 

other studies, bees learned to associate one colour with a reward and another colour with 61 

no reward [7,11]. After encountering an unexpected reward of sucrose solution, the bees 62 

were quicker [7] or more likely [11] to fly towards ambiguous colours. 63 
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However, four of these five studies [7–9,11] used a go/no-go paradigm, where an animal 64 

responds to a positive stimulus (“go”) and suppresses responses to a negative stimuli (“no-65 

go”). Subsequently, the latency to approach, or proportion of “go” responses to, the test 66 

stimuli are used to infer an animal’s state. This paradigm has been used in numerous studies 67 

across different taxa [14], but the measures in this paradigm may be influenced by factors 68 

other than cognitive biases.  For example, changes in latency and/or the proportion of “go” 69 

responses to ambiguous stimuli could reflect changes in motivation, arousal or attention 70 

[15,16]. While motivation and arousal do contribute to emotion-like states, they are 71 

different from judgement biases and the evidence for the latter could be strengthened in 72 

insects. 73 

The likelihood of confounds can be reduced using an active choice judgment bias test 74 

[10,17,18]. This paradigm requires the animal to make an active choice between two 75 

alternative responses. Animals might, for example, learn to move to one location in 76 

response to one stimulus and another location when they see another. Since the animal 77 

must make a choice, this type of test eliminates the possible confounding factors of the 78 

go/no-go paradigm, increasing validity and ease of interpretation. 79 

We therefore used an active choice judgment bias test to rigorously assess judgement biases 80 

in bumblebees (Bombus terrestris). Bees had to choose between two rewarding locations 81 

depending on the stimulus displayed, clearly signalling their judgement when faced with 82 

ambiguous stimuli by moving to one of the two locations. To induce negative states, we 83 

used two types of manipulations simulating predatory attacks – shaking, and trapping by a 84 

robotic arm. These manipulations have previously been shown to be associated with 85 
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cognitive and physiological changes [7,8]. Using two stressors allowed us to ask how 86 

generalizable the cognitive impact would be. 87 

Critically, one location in our experiment always contained a high concentration of sucrose 88 

(or water) while the other location contained a lower concentration sucrose reward (or 89 

water). We hypothesized that stressed bees would be less likely to approach high-reward 90 

locations compared to control bees, indicating a judgement bias. If stress instead impaired 91 

motivation or attention rather than judgement as has been previously argued [19], we would 92 

expect bees to fail to make choices or respond to the stimuli. Shortened choice latencies 93 

have also been previously used as an indicator of optimism in bees [7]. We therefore 94 

examined the choice latencies in our experiment. We predicted that conversely, if the 95 

stressed bees had pessimistic biases, they would have increased choice latencies. Finally, 96 

to further understand the mechanisms underlying our behavioural results, we applied drift 97 

diffusion and signal detection modelling frameworks to the data. We used these 98 

frameworks to test whether judgement biases in bees could be explained by a change in the 99 

estimated probability of a reward. 100 

Materials and Methods 101 

Animals and experimental setup 102 

All experiments were run on female worker bumblebees (Bombus terrestris) obtained from 103 

a commercial supplier (Koppert, UK).  We transferred the bumblebees to one chamber of 104 

a bipartite plastic nest box (28.0 × 16.0 × 12.0 cm). We covered the other chamber of the 105 

nest box with cat litter to allow bees to discard refuse.  The nest box was connected via a 106 
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transparent acrylic tunnel (56.0 × 5.0 × 5.0 cm) to a flight arena (110.0 × 61.0 × 40.0 cm) 107 

with a UV-transparent Plexiglas® lid and lit by a lamp (HF-P 1 14-35 TL5 ballast, Philips, 108 

The Netherlands) fitted with daylight fluorescent tubes (Osram, Germany). When not part 109 

of an experiment, bees were fed with ~3 g of commercially obtained pollen daily (Koppert 110 

B. V., The Netherlands) and provided sucrose solution (20% w/w) ad libitum. Although 111 

invertebrates do not fall under the Animals (Scientific Procedures) Act, 1986 (ASPA), the 112 

experimental design and protocols were developed incorporating the 3Rs principles - 113 

Replacement, Reduction and Refinement (http://www.nc3rs.org.uk/). The housing, 114 

maintenance, and experimental procedures used were non-invasive. 115 

Visual stimuli were solid colours covering the entire display of an LED monitor (Dell 116 

U2412M, 24", 1920 x 1200 px) and controlled by a custom-written MATLAB script 117 

(MathWorks Inc., Natick, MA, USA) using the PsychToolbox package [20]. We measured 118 

the irradiance of all colours used in the experiment using a spectrophotometer (Ocean 119 

Optics Inc., Florida, USA). The perceptual positions of the colours in the bee colour 120 

hexagon space (Fig. 1B) were calculated using the irradiance measurements and spectral 121 

sensitivity functions for Bombus terrestris photoreceptors [21,22]. 122 

We positioned two vertical panels (40.0 × 8.0 cm) 8.5 cm in front of the right and left sides 123 

of the LED monitor, leaving the central area of the monitor open and visible. Each panel 124 

was equipped with an opening to place a reward chamber (7 ml glass vial, 10 mm inner 125 

diameter) 7 cm above the arena floor. After each visit to the arena, the reward chambers 126 

were changed to ensure pheromones and scent marks were not available during the next 127 
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visit. In preparation for the next experimental day, all used chambers were washed in hot 128 

water and 70% ethanol and left to dry.  129 

Training 130 

Before the onset of training, individual bees were familiarized with both reward locations. 131 

A plastic cup was used to gently capture each bee. The opening of the cup was positioned 132 

to align with the entrance to the reward chamber, inside which the bee found a droplet of 133 

sucrose solution (0.2 ml, 30% w/w). We repeated the procedure equally on each side (left 134 

and right) without displaying any colour on the LED screen. Individual bees that learnt the 135 

reward location and performed repeated foraging bouts were tagged for later identification 136 

using number tags (Thorne, UK). Tagging involved trapping each bee in a marking cage, 137 

gently pressing it against the mesh with a sponge, and affixing the tag to the dorsal thorax 138 

with superglue (Loctite Super Glue Power Gel). 139 

In each training trial, we presented bees (n = 48) one of two colours on the LED screen. 140 

The colours used were green (RGB= 0, 255, 75) and blue (RGB= 0, 75, 225).  For a given 141 

bee, one of the colours (e.g. green) always indicated a high-value reward of 0.2 ml 50% 142 

(w/w) sucrose solution in one of the two chambers (e.g., on the left), with the other chamber 143 

(e.g., on the right) containing an equal amount of distilled water. The other colour (e.g. 144 

blue) would be presented in different trials and would always indicate a low-value reward 145 

of 0.2 ml 30% (w/w) sucrose solution in the chamber opposite (e.g., on the right) with the 146 

other chamber (e.g., on the left) containing an equal amount of distilled water. Thus, on 147 

any given trial, the bee saw only one colour and could encounter either the high or low 148 

reward (not both), with water on the unrewarding side. High and low rewards were always 149 
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presented on opposite sides in their respective trials. The volume of reward chosen ensured 150 

that the bees were satiated with their visit and would return to the colony after they 151 

consumed it. 152 

Across bees, the combinations of colour (green or blue), reward location (right or left) and 153 

reward type (high or low) were counterbalanced. Each bee encountered only one possible 154 

combination during training (e.g., green indicating a high reward on the left on half the 155 

trials, and blue indicating a low reward on the right on the other half). Trials presenting 156 

colours associated with high and low rewards were presented an equal number of times in 157 

a pseudorandom order, ensuring that no colour was repeated more than twice in a row. To 158 

ensure that the bee entered the reward chamber fully to sample its content, we placed the 159 

rewards at the end of the chamber. In all cases, the reward quantity allowed bees to fill 160 

their crop within a single visit [23]. We recorded a single choice on each trial, defined as a 161 

bee entering a chamber far enough to sample its content. Incidences of landing or partial 162 

entering (less than 1/3 of the body length) were not considered choices. These occurrences 163 

were rare and comprised only five out of all our choices. Bees that reached the learning 164 

criterion (80% accuracy in the last 20 trials) continued to the test phase. Eleven bees did 165 

not pass the initial conditioning test due to strong side biases. The last ten training trials 166 

were video recorded using a camera on a mobile phone (Huawei Nexus 6P phone 1440 × 167 

2560 px, 120 fps) placed above the arena. We calculated choice latency by averaging across 168 

latencies from the last two training trials of each respective colour. 169 

 170 
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 171 

 172 

Figure 1. Experimental Protocol. A) Bees were trained to associate two colours, green 173 

and blue, presented on an LED screen with different sugar rewards at different locations. 174 

The figure depicts a training scenario with green indicating a low reward (30% sucrose 175 

solution) in the right chamber and blue indicating a high reward (50% sucrose solution) in 176 

the left chamber. The association between colour, reward and location was counterbalanced 177 

across trials. Further details in the text. B) Cue colours plotted in bee colour space (colour 178 

cue: B, blue; NB, near blue; M, medium; NG, near green; G, green). The three vertices 179 

correspond to maximum excitation of photoreceptors sensitive to blue, green and 180 

ultraviolet (UV) light. The distance from the centre to any vertex is 1 and the distance 181 
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between points represents hue discriminability, with 0.1 being easily distinguishable. C) 182 

The test phase consisted of five trials with different colours presented on the screen in a 183 

pseudorandom order (cue value: H, high; NH, near high; M, medium; NL, near low; L, 184 

low). In our example, the screen shows the medium colour with blue as the high-reward 185 

colour (H) and green as the low-reward colour (L), but this was counterbalanced across 186 

bees. Entering a chamber associated with a high reward or low reward during training was 187 

considered optimistic or pessimistic respectively. 188 

 189 

Predatory attack simulation 190 

Individual bees (n=48 from six colonies) that reached the learning criterion in the training 191 

phase were randomly assigned to one of the three treatment groups, using the sample 192 

function in R. Two groups were subjected to manipulations simulating predatory attacks 193 

by shaking (Shaking, n=16) or trapping (Trapping, n=16). A third unmanipulated group 194 

served as a control (Control, n=16). The manipulations were applied to a bee before 195 

entering the arena for each test. Bees in the Control treatment were allowed to fly out into 196 

the flight arena without hindrance as in the training phase. 197 

Each bee in the Shaking treatment was allowed to enter a custom-made cylindrical cage 198 

(40 mm diameter, 7.5 cm length). After entering, the bee was gently nudged down with a 199 

soft foam plunger until the distance between the plunger and the bottom of the cage was 200 

reduced to ~3 cm. Once the plunger was secured, the cage with the bee was placed on a 201 

Vortex-T Genie 2 shaker (Scientific Industries, USA) and shaken at a frequency of 1200 202 
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rpm for 60 s. After shaking, the bee was released into the tunnel connecting the nest box 203 

and experimental arena via an opening on the top of the tunnel. The bee was released into 204 

the flight arena for testing as soon as it was ready to initiate a foraging bout.  205 

Each bee in the Trapping treatment was trapped using a device similar to the robotic “spider 206 

arms” described in previous studies [7] . The mechanism consisted of a soft sponge (3.5 × 207 

3.5 × 3.5 cm) connected to a linear actuator system (rack and pinion). A micro-servo 208 

initiated the linear motion of the trapping device (Micro Servo 9g, DF9GMS), powered 209 

and controlled by a microcontroller board (Arduino, Uno Rev 3). A custom-written script 210 

written in the Arduino Software (IDE) triggered an initial plunging movement of the 211 

trapping device, followed by release after three seconds. This permitted consistent trapping 212 

across all individuals. The bee was then released into the flight arena for testing as soon as 213 

it was ready to initiate a foraging bout. 214 

Judgement bias testing 215 

The test phase consisted of five trials, each with a cue of a different colour presented on 216 

the screen. The test colours were the two conditioned colours (green and blue), and three 217 

ambiguous colours of intermediate value between the two conditioned colours (near blue 218 

(RGB=0, 140, 150); medium (RGB= 0, 170, 120); near green (RGB= 0, 200, 100); Fig. 219 

1B). We classified the ambiguous colours as near-high, medium, and near-low cues 220 

depending on their distance to the high or low rewarding colour. The colour presentation 221 

order was pseudorandomized between all bees, so that the first test colour was always one 222 

of the ambiguous colour cues. During tests, all colour cues were not rewarded, i.e., both 223 

chambers contained 0.2 ml of distilled water. After the bee’s first choice, we gently 224 
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captured it with a plastic cup and returned it to the tunnel connecting the nest and the arena. 225 

Between presentations of each of the test cues, bees were provided refresher trials 226 

consisting of two presentations of each conditioned colour with the appropriate reward at 227 

the correct location. All trials were recorded for video analysis using a mobile phone 228 

camera (Huawei Nexus 6P, 1440 × 2560 px, 120 fps). All experiments and video analyses 229 

were run by the experimenter with knowledge of the conditions. 230 

Measuring feeding motivation 231 

Stress can affect an animal’s feeding motivation as indicated by the amount of reward 232 

consumed [24]. To assess if our manipulations changed bee feeding motivation, we 233 

measured reward ingestion rates. A separate group of bees (n=36) were pre-trained to 234 

forage from a feeder consisting of the reward chamber with a 1.5 mL Eppendorf placed 235 

inside. After learning this location and completing five consecutive foraging bouts, bees 236 

were randomly allocated to one of the three treatment groups for the ingestion test (Control: 237 

n=12, Shaking: n=12, Trapping: n=12). The test consisted of a single foraging bout on a 238 

feeder with sucrose solution (~1 ml, 50% w/w). The feeder was weighed before and 239 

immediately after the test bout to determine the mass of ingested solution using a Kern 240 

Weighing Scale ADB100-4 (Resolution: mg±0.001, Kern & Sohn, Balingen, Germany). 241 

Feeding bouts were recorded using a mobile phone camera (Huawei Nexus 6P, 1440 × 242 

2560 px, 120 fps). The recordings were used to determine ingestion time, defined as the 243 

time from when the bee first touched the sucrose solution with its proboscis until the bee 244 

stopped drinking. For each bee, we calculated the absolute ingestion rate i (mg/s): 245 

i=(m1-m2)/t 246 
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where i is the absolute ingestion rate of a bee, m1 is the mass of the feeder before the 247 

foraging bout, m2 is the mass of the feeder after the foraging bout, and t is the ingestion 248 

time of the bee. After it completed the test, the bee was sacrificed by freezing and stored 249 

in 70% ethanol at -20°C. We measured the intertegular distance (W) and the length of the 250 

glossa of each bee with a digital calliper (RS PRO Digital Calliper, 0.01 mm ± 0.03 mm) 251 

under a dissecting microscope. We then adjusted the absolute ingestion rate i to account 252 

for individual size variability using the formula: 253 

I=iW^(1/3) G (4), 254 

where I is the adjusted ingestion rate of a bee, G is the length of the glossa, and W is the 255 

intertegular distance. This is an adaptation of the formula developed earlier [25] with 256 

intertegular distance instead of weight, as it has been shown to be precise at estimating 257 

bumblebee weights [26]. 258 

To control for evaporation, we placed an additional Eppendorf with 50% sugar solution on 259 

the opposite side of the test chamber and recorded its mass before and after each test. The 260 

loss of mass due to evaporation was subtracted from the mass of the solution after the 261 

foraging bout. 262 

Video analysis 263 

Video analysis was done using BORIS© (Behavior Observation Research Interactive 264 

Software, version 7.10.2107) (6). In the judgment bias experiment, we coded two 265 

behaviours for each bee. The first, “Choice”, indicated bee entry into a reward chamber 266 

and was classified as a point event, an event which happen at a single point in time. The 267 
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second behaviour, “Latency to choose”, was the time taken to choose and was classified as 268 

a state event, i.e., an ongoing event with a duration. For the foraging motivation 269 

experiment, we coded a single behaviour, “Drinking duration”, classified as a state event 270 

indicating ingestion time. 271 

Statistical analysis 272 

Our hypothesis and statistical analyses of the main active choice experiment were 273 

preregistered at aspredicted.com (#62198). The data were plotted and analysed using 274 

RStudio v.3.2.2 (The R Foundation for Statistical Computing, Vienna, Austria). To 275 

determine the final sample size needed, we used a Bayes Factor approach implemented 276 

with the brms package (see Supplementary Materials for details) [27–29]. Subsequent 277 

statistical models were fit by maximum likelihood estimation and, when necessary, 278 

optimized with the iterative algorithms [30] . Models were compared using the model.sel 279 

function in the MuMIn package [31] and the model with the lowest Akaike information 280 

criterion (AIC) score was selected as the best model. We used the package DHARMa [32] 281 

for residual testing of all models.  282 

For the judgment bias analysis, we used the probability of choosing the chamber associated 283 

with a high reward as the dependent variable, coding choices of reward chambers 284 

previously associated with high-value and low-value cues as 1 and 0 respectively. For ease 285 

of discussion, we henceforth call the choices of high-reward chambers “optimistic” and 286 

choices of low-reward chambers “pessimistic”. We fit a generalized linear mixed-effect 287 

model using the glmer function of the lme4 package with binomial errors and a logit link 288 

function. The explanatory variables included in the model were “Treatment” (categorical: 289 
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Control, Shaken, Trapped) and “Cue” (continuous: 1-5, where 1 = high and 5 = low value 290 

cue) which refers to the colour displayed on the screen. The identity of the bee (“ID”) was 291 

included as a random intercept variable. 292 

To analyse choice latency, we fit a linear mixed-effect model using the lmer function of 293 

the lme4 package. Latency data were log-transformed and latencies greater than 1.5 times 294 

the Inter Quartile Range were excluded (a total of 18 out of 240 data points). The 295 

explanatory variables included in the model were “Treatment” (categorical: Control, 296 

Shaken, Trapped) and “Cue” (continuous: 1-5, where 1 = high and 5 = low value cue). In 297 

addition, since we expected optimistic responses to be faster, we included "Response Type" 298 

(coded as 1 and 0 for optimistic and pessimistic responses respectively) as an explanatory 299 

variable. Bee identity (“ID”) was included as a random intercept variable.  300 

Data for other analyses were first tested for normality before using appropriate tests. We 301 

ran a one-way ANOVA on the body-size-adjusted ingestion rate to test for treatment 302 

differences. We also used Kruskal-Wallis tests to compare the average number of trials to 303 

the criterion in the training phase across treatments, and to investigate the impact of the 304 

side and colour associated with a high-value cue. 305 

Signal detection theory model 306 

We examined whether the behaviour of the bees could be modelled with standard signal 307 

detection theory [33], and what we could infer about the underlying mechanisms. We 308 

assumed that bees learn to make their foraging decision during training based on the value 309 

of an internal signal x which indicates whether they are in a high or low reward situation. 310 
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We specified x as a “low reward signal” with a high value when the cue indicates a low 311 

reward. We assumed that bees have some internal decision boundary B, such that when 312 

x>B, they behave appropriately for the low-reward situation, and conversely when x<B for 313 

the high-reward. Although on average the value of x reflects the cue, it is affected by noise, 314 

explaining why bees do not always make the same decision in the same experimental 315 

situation.  316 

Since we have fitted our data with a logistic link function, we modelled the distribution of 317 

the noisy signal as the first derivative of a logistic function. This allowed our signal 318 

detection model to predict logistic response curves, as we see below. The standard logistic 319 

is  320 

𝐹𝐹(𝑥𝑥) =
1

1 + exp(−𝑥𝑥) 321 

Equation 1 322 

and its first derivative is 323 

𝑓𝑓(𝑥𝑥) =
𝑑𝑑𝑑𝑑
dx

=
exp(𝑥𝑥)

[1 + exp(𝑥𝑥)]2 324 

Equation 2 325 

which is therefore the distribution we assume for our noise.  326 

The probability density function governing the distribution of the signal x is therefore 327 

1
𝜎𝜎
𝑓𝑓 �𝑥𝑥−𝐶𝐶

𝜎𝜎
�, where C represents the value of the cue and 𝜎𝜎 is the standard deviation of the 328 
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noise. The probability of an optimistic response on any given trial is the probability that 329 

the value of x on this trial is less than the decision boundary B, given the value of the cue 330 

on this trial. This is 331 

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = � 𝑑𝑑𝑑𝑑
𝐵𝐵

−∞

1
𝜎𝜎
𝑓𝑓 �
𝑥𝑥 − 𝐶𝐶
𝜎𝜎

� = 𝐹𝐹 �
𝐵𝐵 − 𝐶𝐶
𝜎𝜎

� 332 

Equation 3 333 

As noted above, with the assumption that the noise distribution is the logistic-derivative, 334 

f(x), the probability of an optimistic response is a logistic function of cue C. 335 

As well as the cue, the bee’s behaviour is influenced by the noise σ and the decision 336 

boundary B. The noise may vary depending on factors like fatigue or attention, while the 337 

decision boundary may reflect a cognitive strategy. A common assumption is that the 338 

decision boundary is chosen to maximize expected reward. We therefore calculated the 339 

expected reward during training. 340 

On trials where the cue C was set to CHi, optimistic responses are made with probability 341 

𝐹𝐹 �𝐵𝐵−𝐶𝐶𝐻𝐻𝐻𝐻
𝜎𝜎

� and rewarded with 50% sucrose, with perceived value denoted as RHi. 342 

Conversely, pessimistic responses are made with probability �1 − 𝐹𝐹 �𝐵𝐵−𝐶𝐶𝐻𝐻𝐻𝐻
𝜎𝜎

��  and obtain 343 

only water, of value Rw. The average reward experienced on high-value-cue trials is thus 344 

< 𝑅𝑅 >|𝐶𝐶=𝐶𝐶𝐻𝐻𝐻𝐻 =  𝑅𝑅𝐻𝐻𝐻𝐻𝐹𝐹 �
𝐵𝐵 − 𝐶𝐶𝐻𝐻𝐻𝐻

𝜎𝜎
� + 𝑅𝑅𝑤𝑤 �1 − 𝐹𝐹 �

𝐵𝐵 − 𝐶𝐶𝐻𝐻𝐻𝐻
𝜎𝜎

�� 345 
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On trials where the cue C was CLo, optimistic responses are made with probability 346 

𝐹𝐹 �𝐵𝐵−𝐶𝐶𝐿𝐿𝐿𝐿
𝜎𝜎

� and result in water, Rw, whereas  pessimistic responses are made with probability 347 

�1 − 𝐹𝐹 �𝐵𝐵−𝐶𝐶𝐿𝐿𝐿𝐿
𝜎𝜎

��  and rewarded with 30% sucrose, RLo. The average reward on low-cue 348 

trials is thus 349 

< 𝑅𝑅 >|𝐶𝐶=𝐶𝐶𝐿𝐿𝐿𝐿 = 𝑅𝑅𝑤𝑤𝐹𝐹 �
𝐵𝐵 − 𝐶𝐶𝐿𝐿𝐿𝐿

𝜎𝜎
� + 𝑅𝑅𝐿𝐿𝐿𝐿 �1 − 𝐹𝐹 �

𝐵𝐵 − 𝐶𝐶𝐿𝐿𝐿𝐿
𝜎𝜎

�� 350 

Overall, then, the expected reward during training is 351 

< 𝑅𝑅 >  = 𝑃𝑃𝐻𝐻𝐻𝐻𝑅𝑅𝐻𝐻𝐻𝐻𝐹𝐹 �
𝐵𝐵 − 𝐶𝐶𝐻𝐻𝐻𝐻

𝜎𝜎
� + 𝑃𝑃𝐻𝐻𝐻𝐻𝑅𝑅𝑤𝑤 �1 − 𝐹𝐹 �

𝐵𝐵 − 𝐶𝐶𝐻𝐻𝐻𝐻
𝜎𝜎

�� + 𝑃𝑃𝐿𝐿𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿 �1 − 𝐹𝐹 �
𝐵𝐵 − 𝐶𝐶𝐿𝐿𝐿𝐿

𝜎𝜎
��352 

+ 𝑃𝑃𝐿𝐿𝐿𝐿𝑅𝑅𝑤𝑤𝐹𝐹 �
𝐵𝐵 − 𝐶𝐶𝐿𝐿𝐿𝐿

𝜎𝜎
� 353 

Equation 4 354 

where PHi and PLo represent the probabilities that a given trial offers high or low reward.  355 

The optimal boundary Bopt, that maximises the expected reward then satisfies the equation 356 

𝑃𝑃𝐻𝐻𝐻𝐻(𝑅𝑅𝐻𝐻𝐻𝐻 − 𝑅𝑅𝑤𝑤)𝑓𝑓 �
𝐵𝐵𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐶𝐶𝐻𝐻𝐻𝐻

𝜎𝜎
� = 𝑃𝑃𝐿𝐿𝐿𝐿(𝑅𝑅𝐿𝐿𝐿𝐿 − 𝑅𝑅𝑤𝑤)𝑓𝑓 �

𝐵𝐵𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐶𝐶𝐿𝐿𝐿𝐿
𝜎𝜎

� 357 

Equation 5 358 

(found by taking the derivative of the expected reward, Equation 4, with respect to B and 359 

finding where this is equal to 0).  360 

Equation 5 has a simple graphical interpretation (see fitted model in Fig. 3). First, the 361 

probability distributions for high and low reward are rescaled by their estimated probability 362 
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and by the additional utility of getting the trial right, compared to the water available with 363 

the wrong decision. Then, the optimal boundary is where these rescaled distributions cross 364 

over (solid vertical lines in Fig. 3). If the cue probabilities and reward utilities were equal, 365 

i.e. 𝑃𝑃𝐻𝐻𝐻𝐻(𝑅𝑅𝐻𝐻𝐻𝐻 − 𝑅𝑅𝑤𝑤) = 𝑃𝑃𝐿𝐿𝐿𝐿(𝑅𝑅𝐿𝐿𝐿𝐿 − 𝑅𝑅𝑤𝑤), then the optimal decision boundary would be 366 

exactly in the middle between the two cue values: 𝐵𝐵𝑜𝑜𝑜𝑜𝑜𝑜 = 0.5(𝐶𝐶𝐻𝐻𝐻𝐻 + 𝐶𝐶𝐿𝐿𝐿𝐿). 367 

Drift diffusion model 368 

Drift diffusion models shed light on the cognitive processes underlying decision making in 369 

choice tasks [34]. They generate estimates of the time taken to accumulate sensory 370 

evidence for a particular response and the evidentiary threshold for the response decision. 371 

We used this framework to investigate which of these two criteria (or both) were changed 372 

due to our stress manipulations. 373 

We fit a drift diffusion model to the choice latency data in our three treatments using the R 374 

package rtdists [35]. The model assumes that the bee accumulates sensory evidence 375 

towards a decision and makes the optimistic or pessimistic choice once the evidence has 376 

passed a threshold. Pessimistic and optimistic choice thresholds were defined to be at 0 and 377 

1 respectively. The decision variable was assumed to begin from a start point z between 378 

the two boundaries. It was subject to random noise represented by the diffusion constant s 379 

but had a drift rate v towards one or the other boundary, based on the sensory evidence. In 380 

our experiment, v should be positive for Cue=1 and negative for Cue=5. In our model, we 381 

assumed that v was a linear function of Cue. 382 

 383 
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Results 384 

Training 385 

During training, 48 bumblebees achieved the learning criterion and continued to the 386 

judgment bias test. There were no significant differences in the number of trials required 387 

to reach the criterion among bees that experienced the high reward on the right or left 388 

location (Kruskal-Wallis test: χ2 = 2.94, df = 1, p = 0.09). Similarly, there was no significant 389 

difference in the total number of trials to criterion for bees experiencing blue or green as 390 

the high reward colour (Kruskal-Wallis test: χ2 = 0.94, df = 1, p = 0.33). The number of 391 

trials to criterion also did not differ among bees used in each of the three treatment groups 392 

(Kruskal-Wallis test: χ2 = 0.88, df = 2, p = 0.64).  393 

Bees took significantly longer to choose a low-reward cue compared to a high reward in 394 

the last choices of training (Table S2, LMEM, Estimate ± S.E. = 0.59±0.09, t = 6.79, p < 395 

0.001). The difference in latencies demonstrates that the bees could differentiate between 396 

both the colour cues and the two rewards. 397 

Physically Stressed Bees are Less Optimistic 398 

The best model for our data included main effects of cue colour and treatment but no 399 

interaction effect (see supplementary Table S1 for model selection). Shaking significantly 400 

reduced the probability of optimistic responses, i.e., choosing the location associated with 401 

a high reward (Fig. 2A, Table S2, GLMM, Estimate ± S.E. = -1.49 ± 0.57, z = -2.61, p < 402 

0.01). Trapping also significantly reduced the likelihood of an optimistic response (Fig. 403 

2A, Table S2, GLMM, Estimate ± S.E. = -1.26 ± 0.56, z = -2.23, p = 0.026). Bees were 404 
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also significantly less likely to respond optimistically to cues with colours further away 405 

from that of the high reward cue (Fig. 2A, Table S2, GLMM, Estimate ± S.E. = -1.79 ± 406 

0.21, z = -8.39, p < 0.001). All bees always made a choice, i.e., bees not responding 407 

optimistically responded pessimistically. 408 

 409 



 

 

22 

 

 410 

Figure 2. Bee responses to test cues. A) Proportion of bees (N = 16 per treatment) making 411 

an optimistic choice (choosing a reward chamber associated with high reward) in response 412 

to each of five cues. B) Response latency to each of five cue values (N = 16 bees per 413 



 

 

23 

 

treatment). C) Average ingestion rate of high reward (50% sugar solution) for bees in each 414 

treatment group (N = 12 bees per treatment). The treatment groups were control (blue), 415 

shaking (red), and trapping (orange). The test cues were high, near high, medium, near low, 416 

and low value cues depending on their distance to the colours of high- and low-reward 417 

cues. Points and bars represent means. Shaded areas and error bars represent 95% 418 

bootstrapped confidence intervals. Dots represent values from individual bees. 419 

 420 

Choice Latencies and Feeding Motivation 421 

The best-fitting model for choice latency during tests included treatment, cue value and 422 

response type (optimistic or pessimistic) as fixed predictors and an interaction between cue 423 

value and response type (supplementary Table S1). Bees in the Trapping treatment were 424 

significantly faster to make a choice than control bees (Fig. 2B, Table S2, LMEM, Estimate 425 

± S.E. = -0.23 ± 0.1, t value = -2.25, p = 0.029). Shaken bees were not significantly faster 426 

to make their choices than control bees (Fig. 2B, Table S2, LMEM, Estimate ± S.E. = -427 

0.11 ± 0.10, t value = -1.121, p = 0.27). All bees were significantly slower to make a choice 428 

when the cue colour was further away from that of the high reward cue (LMEM, Estimate 429 

± S.E. = -0.09 ± 0.03, t value = -2.6, p < 0.01). Bees were faster when making optimistic 430 

choices compared to pessimistic ones (LMEM, Estimate ± S.E. = -0.93 ± 0.16, t = -5.74, p 431 

< 0.001). Additionally, a significant interaction between cue value and response type 432 
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(LMEM, Estimate ± S.E. = 0.262 ± 0.051, p < 0.001) indicated that the decrease in latency 433 

with increasing cue value was more pronounced for optimistic responses. 434 

 435 

The mean ingestion rates in our feeding motivation experiment did not differ significantly 436 

between treatment groups (Fig. 2C, ANOVA: F(2, 33) = 0.881, p = 0.424). 437 

Signal Detection Theory Model 438 

According to a standard signal-detection theoretic approach, the probability that a bee 439 

makes an optimistic choice for Cue level C is (Equation 3) 440 

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐹𝐹 �
𝐵𝐵 − 𝐶𝐶
𝜎𝜎

�, 441 

where σ is the noise on the internal signal, B is the decision boundary, and F is the logistic 442 

function. This is exactly the model fitted by our generalized linear mixed model (GLMM, 443 

see above), with the fitted gradient for Cue corresponding to −1/𝜎𝜎 and the intercept 444 

corresponding to 𝐵𝐵/𝜎𝜎. Thus, the fact that we found no interaction between Cue and 445 

Treatment suggests that the effective noise level is not changed by our manipulations. The 446 

estimate of -1.79 for the gradient (Table S2) allows us to infer an effective noise level of σ 447 

= 0.56, in our units where Cue runs from 1 (high reward) to 5 (low reward).  448 

 449 

However, the significant main effect of Treatment indicates that the decision boundary was 450 

different in the two cases. The estimate of 6.05 (Table S2) for the intercept in the control 451 

condition implies that the decision boundary in this condition is 3.38. Bees in the Control 452 

treatment are thus equally likely to make optimistic or pessimistic responses when the cue 453 

is a little closer to “near low” than medium (3). The fact that the intercept drops by -1.49 454 
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for the Shaking treatment and -1.26 for Trapping (Table S2) implies that the boundary 455 

shifts leftward to 2.55 and 2.68, respectively, in these conditions. The point at which these 456 
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bees are equally likely to make optimistic and pessimistic choices is closer to “near high” 457 

than to medium (Fig. 3).  458 

 459 

 460 
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Figure 3. Bee decision-making boundaries and priors fitted by a signal-detection 461 

model. Curves depict the probability density functions for responses based on the internal 462 

signal x indicating a low reward. In each case, the original distribution has been weighted 463 

by the product of the value of that reward and its probability of occurring (see Equation 5). 464 

The two curves in each panel depict the probabilities that the cue indicates high reward 465 

(green, centred on 1) or low reward (blue, centred on 5). Solid lines depict the decision 466 

boundary B inferred from the model fit to our data. Dotted lines indicate the medium point 467 

for comparison. Regions to the right of the solid boundary line are regions where the bee 468 

makes pessimistic choices (shaded blue). Regions to the left are regions where the bee 469 

makes optimistic choices (shaded green). Arrows depict the shift in boundaries compared 470 

to the control condition. The three panels depict the conditions for the Control (top), 471 

Shaking (middle) and Trapping (bottom) treatments. Note the change in axes in the lower 472 

two panels. 473 

 474 

In our fitted model, weighted probability distributions for both low and high rewards have 475 

an equal spread, reflecting the noise level inferred from the GLMM. In the Control 476 

treatment, the shift of the decision boundary reflects the greater weight given to the high 477 

reward. Quantitatively, the extent of the shift, together with the fitted noise level, implies 478 

that the high reward is given 3.6 times the weight of the low reward. This result also cannot 479 

be explained merely by the bees not perceiving the medium colour as midway between 480 

blue and green since both the high and low reward trials combine data from trials where 481 

the cue was blue and trials where it was green. Instead, this result might, for example, 482 
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suggest that the bees understand that both rewards are equally likely (PHi = 50%) and find 483 

the 50% sucrose solution 3.6 times as rewarding, relative to water, as the 30% solution.  484 

 485 

The fact that the decision boundary is to the left of neutral in the Shaking and Trapping 486 

treatments suggests that here, greater weight is given to the low reward (Fig. 3). Assuming 487 

we can discount the possibility that the reward value has inverted (i.e., that stressed bees 488 

find 30% sucrose more rewarding than 50%), this must represent a shift in their estimates 489 

of reward probabilities, such that stressed bees now consider high-reward trials less likely. 490 

To match the extent of the leftward shift, given the noise level inferred from our GLMM 491 

fit, the low reward must be weighted 4.6 times as much as the high reward. If the reward 492 

ratio were 3.6, this would imply that the bees behave as if the perceived probability of the 493 

high reward was 6%. However, if stressed bees find 50% and 30% sucrose equally 494 

valuable, i.e., the stress has removed the difference in reward utility, then the observed shift 495 

in decision boundary could be produced with a less dramatic shift in estimated probability, 496 

with perceived probability of the high reward being 18%.  497 

 498 

Drift Diffusion Model 499 

Our best model was obtained by allowing the time before making a decision and the value 500 

of the drift rate for Cue = 3 (v3) to vary between treatments, while fitting all data with the 501 

same values for the diffusion constant s, start point zr, the dependence of drift rate on cue, 502 

vGradient, and noise on the drift rate, sv. The drift diffusion model predicts not only the 503 

bees’ choices (Fig. 4A) but also the latencies for both optimistic and pessimistic choices 504 

(Fig. 4B). There are not enough trials to accurately estimate the latency distributions (just 505 
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16 trials for each Cue/Treatment combination, thus < 16 for each choice). The model for 506 

latencies is, therefore, not a good fit (Fig. 4B). With that caveat, the fitted model implies a 507 

few key points. 508 

 509 
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Figure 4. Drift diffusion model. A) Proportion of optimistic choices made by the bees in 510 

each treatment in response to the different cues. Points show the data, dashed curves show 511 

the predictions of a fitted logistic regression model with main effects of Treatment and Cue 512 

but no interaction. Solid curves show predictions of a fitted drift diffusion model. Colours 513 

depict the different treatments: Control (blue), Shaking (red) and Trapping (orange). B) 514 

Drift diffusion model fit to latencies. Filled symbols linked with lines show median 515 

latencies as a function of the percentage of responses made for pessimistic (top) and 516 

optimistic (bottom) responses in the three treatments (columns). Empty symbols show 517 

predictions of the fitted drift diffusion model. Symbols show Cue value. There is a high 518 

percentage of optimistic responses for high (triangles) and near high (diamonds) cues and 519 

a high proportion of pessimistic responses for low (inverted triangles) and near low 520 

(squares) cues.  521 

 522 

 523 

Firstly, by default, bees tend to be biased towards the more rewarding choice. The start 524 

point for the decision variable is not midway between the two boundaries, 0.5, but closer 525 

to the boundary for the optimistic choice, 0.56. Secondly, stress did not affect sensory 526 

noise. We found that the best model was again obtained by assuming that sensory noise, 527 

was the same for all groups. Thirdly, stressed bees spend less time on non-decision activity: 528 

the model fitted more time on non-decision activity (e.g., flying across the arena) for the 529 

control bees than for the shaken or trapped bees. This could perhaps suggest that stressed 530 

bees might not want to spend time exploring what could potentially be a dangerous 531 

environment. Finally, this model also confirms that the stressed bees are more pessimistic. 532 
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This is shown by the fitted drift rate for the medium cue, Cue = 3. In the absence of bias, 533 

the drift rate should have been zero in this case since the cue was designed to be exactly 534 

midway between the high and low reward cues. Control bees nevertheless showed a small 535 

positive drift rate for this cue, indicating that they took it as weak evidence for high reward. 536 

However, shaken and trapped bees both showed a small negative drift rate, indicating 537 

perceived weak evidence for low reward. This is what accounts for the leftward shift in the 538 

response curves for stressed bees. Note that even though, according to the model, all bees 539 

start slightly biased towards a high-reward response (z = 0.55), in stressed bees, the 540 

negative drift rate for the medium cue is enough to bias responses towards the pessimistic 541 

response.  542 

 543 

Discussion 544 

Our results show that in response to ambiguous cues, stressed bees were less likely than 545 

control bees to choose locations that were previously high rewarding. Our models suggest 546 

that this is due to a reduced estimate of the probability of high rewards. 547 

 548 

Most studies of judgment bias use a go/no-go paradigm. The results of these studies can be 549 

challenging to interpret due to confounds from other factors that do not involve stimulus 550 

judgements such as, for example, motivation [19]. Our active choice design avoids these 551 

complications, so motivation alone cannot explain the observed shift in responses. This is 552 

further supported by our ingestion rate experiment, which shows no differences in feeding 553 

motivation. Furthermore, in one previous test of insect judgment biases, shaken honeybees 554 

showed a decreased proportion of “go” responses not only to ambiguous odour mixtures 555 
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but also to the conditioned negative odour [8]. This decrease could indicate an improved 556 

ability to differentiate odours rather than a negative bias in judgement [36]. In our 557 

experiment, however, the bees were perfectly accurate when responding to both 558 

conditioned cues in the tests. Our manipulations thus did not impair the colour 559 

discrimination abilities and memory of the bees. 560 

 561 

Response latencies in judgement bias tests can be particularly difficult to interpret. For 562 

instance, exposure to a positive event has been reported to cause both longer [37] and 563 

shorter [38] response times to ambiguous stimuli. Increased latencies may also be 564 

associated with a general increase in reactivity and arousal, due to, say, the increased 565 

energetic demands of stressful events [39]. It may also indicate a shift in the perceived 566 

value of the reward and differences in motivation [40]. Shorter latencies to ambiguous cues, 567 

on the other hand, could result from factors like neophobia rather than negative 568 

interpretations of those cues [41].  569 

 570 

Only one study has used latencies to measure judgment biases in bees [7]. This study 571 

demonstrated an optimistic bias in bumblebees, showing that unexpected sugar solution 572 

rewards reduced the latency with which bees approached ambiguous stimuli. However, the 573 

treatment also caused an increase in thoracic temperature which has been linked to 574 

increased foraging motivation [42]. Despite the study’s controls, motivation and arousal 575 

alone could potentially explain these results [19]. In our study, trapped bees had shorter 576 

latencies than control bees. Based on the approach in the previous study, this could suggest 577 

an optimistic bias. However, this interpretation would be misleading, as changes in feeding 578 
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motivation or general arousal can also cause faster latencies. While arousal is widely used 579 

to characterize emotional states, both positive and negative states can involve increased 580 

arousal levels [43]. Our design allows us to more reliably use active choices to indicate 581 

affective valence. In the absence of active choices, it is difficult to determine whether 582 

increased approach latencies indicate changes in emotional valence or merely changes in 583 

motivation. It is also important to note that our different treatments kept the bee out of the 584 

colony for differing amounts of time. This could additionally contribute to stress levels and 585 

have an influence on response latencies. 586 

 587 

One previous study has used an active choice design to study judgement biases in insects 588 

[10]. In that study, flies were trained to associate two odours, with either a reward or a 589 

punishment. Our study instead uses rewards of different quality, allowing us to investigate 590 

how states modulate expectations and perceptions of reward. Using paradigms involving 591 

reward and punishment can make it easier to detect affect-dependent judgement bias 592 

compared to paradigms with two rewards [14]. Therefore, finding a bias using two rewards, 593 

as we do, provides robust evidence for affect-dependent processing in insects. 594 

 595 

Measuring active choices also allowed us to use a signal detection approach. This has been 596 

suggested as a valuable tool for investigating affective disorders but has rarely been applied 597 

in human clinical studies [44]. A recent study suggested that judgement biases in bees may 598 

be caused by a shift in stimulus-response gradients [11]. However, this study did not 599 

investigate the underlying cognitive mechanisms of this shift. In our model, the estimation 600 

of future outcomes combines estimates of the probability of an outcome and the magnitude 601 



 

 

34 

 

of the payoff from an outcome. Our models demonstrate that control bees respond more 602 

optimistically to ambiguous cues, indicating an expectation of high rewards. Such a bias 603 

would in fact what is predicted by a rational, fully informed strategy which optimises 604 

expected reward. Even if the bees are estimating the probabilities correctly as 50-50, the 605 

difference in reward utility will still shift the decision boundary towards the cue indicating 606 

low reward (Fig. 3).  607 

 608 

The decision boundary and drift rate for the stressed bees are harder to interpret. Here, the 609 

decision boundary is to the left of neutral and the drift rate is negative. Previous studies 610 

have shown that acute stress can increase an animal’s sensitivity to the reward [45]. 611 

However, the observed left shift of the decision boundary in stressed bees cannot plausibly 612 

reflect such a change in sensitivity since a leftward shift could only be produced if the value 613 

of high and low rewards were swapped, i.e., if 50% sucrose became less rewarding than 614 

30%. However, it could reflect a pessimistic bias in expectations, i.e., that the stressed bees 615 

behave as if high rewards are less likely (PHi < PLo). This can account for a leftward shift, 616 

but the large quantitative extent of the shift is still surprising. Since the noise remains 617 

relatively small, as indicated by the perfect performance for high and low cues, we have to 618 

postulate enormous changes in the priors to produce the observed shift. To obtain the 619 

decision boundary of 2.55 inferred for shaken bees, we would have to postulate that shaken 620 

bees estimate PLo = 94%, i.e., they expect a high reward to be available on only one trial in 621 

20. This assumes that the reward utility remains the same. If the relative utility of the high 622 

reward increased, e.g., because of an increased need for sucrose after stress [39], the 623 

estimated probabilities would have to shift even further from 50%. However, one 624 
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possibility is that, contrary to the assumptions of our model, the noise was not uniform for 625 

all cues, and there was more sensory noise on intermediate values of the cue. If so, the 626 

change in probabilities would not need to be as dramatic, although the basic result of 627 

changed probabilities would remain true. 628 

 629 

Could the pessimistic judgements of the bees be adaptive? Emotions have evolved to guide 630 

behaviour by informing animals about their success in obtaining resources and avoiding 631 

dangers in their environment [43]. Pessimism, for example, could be an adaptive strategy 632 

in a dangerous and unpredictable environment [46]. A pessimist is more likely to avoid 633 

risky decisions that could jeopardize gains in pursuit of more rewarding opportunities, 634 

which, in unfavourable environments, could be unlikely. In our study, stressed bees 635 

experience a simulated predatory attack. This could exhaust their energetic stores and 636 

signal a dangerous environment. In response to the attack, the bees lowered their reward 637 

expectations. This could reflect more cautious behaviour, a potentially adaptive strategy in 638 

a dangerous environment. Our results thus suggest the possibility of shared adaptive 639 

responses across diverse taxa. 640 

 641 

While the present study further validates the capacity of bees for emotion-like states, the 642 

mechanisms behind these behaviours remain largely unknown. Future research should 643 

focus on understanding how these states are generated and sustained. Clarifying these 644 

mechanisms will help determine whether the observed states share a common ancestry with 645 

similar states in vertebrates or are distinct and result from convergent evolution. 646 

 647 
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