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Abstract. Tobetter understand how insects use stereopsis to discern the proximity
of objects, we previously developed a stereopsis algorithm that was tested in
simulation. In the present study, we have begun to implement this algorithm as part
of a robot controller. This includes building a small mobile robot, characterizing
its cameras, and building a test arena. Implementing the stereopsis algorithm on a
robot will test whether the algorithm performs as intended in real-world scenarios
and will enable a robot to determine the proximity of objects in its field of view
with a low power algorithm.
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1 Introduction

The computational demands of performing stereopsis formobile robots are very high and
may require an impractical amount of computing power. Despite this challenge, vision is
a key functionality for many unmanned mobile robots [1, 9]. Robotic vision necessitates
real-time operation, meaning that outputs such as object detection, segmentation, and 3D
reconstruction must be performed in real-time or faster [10]. One way that engineers try
to cope with the complexities of these applications is to train deep neural networks that
can replicate these operations, then deploy them onboard robots [1]. However, deploying
such networksmay require specialized hardware such as largeCPUs,GPUs, and batteries
thatmay require space and energy thatmobile robots cannot provide [4]. Such limitations
require that performance be sacrificed formobile operation, often resulting in less refined
and capable robots [2].

Insects can be used as inspiration for solutions that address these challenges. Insect
visual systems possess high temporal resolution while only using low spatial resolution
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allowing for the rapid detection of colors, polarized light, and geometric patterns [7].
Some insects, such as the praying mantis, have eyes with overlapping fields of view,
which has been shown to underlie stereopsis to discern distance of objects from the
insect [3]. Furthermore, due to their low spatial resolution and the hardiness of insects,
their visual systems are more experimentally accessible than those of other living beings
such as mammals.

Modeling of insect vision has been conducted to emulate the neural capabilities of
insects [7]. The success of robots such as the Beebot Quadcopter has shown that insect-
inspired visual processing is a promising approach for real-time visual processing [8].
However, processing may be too computationally demanding to be performed online,
requiring the robot to send video to an offline server, process the data, then send the
result back to the robot, which is susceptible to network interruptions.

To move toward a computationally inexpensive way to locate the closest object to a
robot using stereopsis, we have begun to embody amodel of insect stereopsis in a mobile
robot. We designed a robot and a testing arena and show that our hardware measures
disparity between its eyes. Our approach differs from previous studies in that it utilizes
a simple correspondence-free algorithm which doesn’t need to explicitly match pixels
between cameras but rather has as “intuitive” understanding of the distance of objects
[5]. We discuss how the algorithm will be implemented onboard the robot in the future.

2 Methods

2.1 Robot and Cameras

We built a small mobile robot with which to test the stereopsis algorithm (Fig. 1A). The
robot is a Zumo chassis with a Raspberry Pi 3B and two Pixy2 cameras [6] (Fig. 1B)
mounted on top. These components are attached via a custom 3D-printed body. Each
Pixy2 has wide-angle lens with 87° field of vision and an integrated filtering system that
locates specific color hues within the field of view. The Pixy2s are mounted on the robot
3.825 cm apart and 10.9 cm above the arena floor, facing straight forward, resulting in 87º
of overlap between each camera’s field of view. The Raspberry Pi serves as the “brain” of
the robot by receiving visual input and directing behavior by issuing motor commands to
the Zumo’s Arduinomicrocontroller. To simplify validation, we constructed a controlled
visual environment (CVE) with a uniform background (Fig. 1C). The usable volume
of the CVE is 87.6 cm × 87.6 cm × 30.5 cm constructed using a series ten 80/20
framework and 6.35 mm-thick white acrylic sheets. The floor of the CVE has a black
border approximately three centimeters from the walls, which the robot detects to avoid
collision with the walls.
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Fig. 1. A) Zumo Robot with attached Arduino R3, B) PixyCam2 with wide-angle lens, C)
Controlled visual environment with Zumo Robot, D) “Prey” Targets

2.2 Neural Network

The visual data collected by each individual Pixy2 will be inputted into a neural network
that determines the location of the closest landmark in the visual field [6] (Fig. 2A).
The network has a winner-take-all (WTA) structure that maps the landmark coordinates
from each eye to the azimuthal position of the closest landmark (Fig. 2B). The network’s
function is the result of its spatially-correlated synaptic weights (Fig. 2C), which in effect
solve the correspondence problem [7].

Fig. 2. A) Robotic platform with field of view broken into bins, B) Corresponding links between
the two camera bins, C) Synaptic weights generated from links

3 Preliminary Results and Discussion

3.1 Camera Binocular Images

Figure 3 shows two images of variable height targets at varying distances taken from
each of the robot’s eyes. These images demonstrate that there is noticeable binocular
disparity between the cameras, suggesting our camera configuration is sufficient for use
with the stereopsis algorithm in question [7].
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Fig. 3. A) Image captured by “left eye”, B) Image captured by “right eye”

3.2 Future Work

With a robot and arena constructed and a control network that functions in simulation
[7], our next step is to integrate the network with the robot and evaluate how well the
network performs when confronted by real-world conditions, e.g., limited bandwidth
and self-motion. The neural network’s number of inputs and synaptic weights will be
updated to reflect the robot’s cameras’ resolution, field of view, and interocular distance.
The network will be implemented on the Raspberry Pi 3B and will receive input from
the Pixy2 cameras. The output of the network will drive saccades of the body to orient
the robot toward the closest “prey” target. In the future, we plan to test the “predator”
robot’s ability to track multiple moving “prey” robots in real-time using our stereopsis
model.
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